943 resultados para C26 - Instrumental Variables (IV) Estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crude prevalence of antibodies to Babesia bovis infection in cattle was estimated by serology using indirect ELISA during the period January to April, 1999. Sera were obtained from 1395 dairy cattle (of all ages, sexes and breeds) on smallholder farms, the majority being kept under a zero grazing regime. The crude prevalence of antibodies to Babesia bovis was 6 % for Tanga and 12 % for Iringa. The forces of infection based on the age sero-prevalence profile, were estimated at six for Iringa and four for Tanga per 100 cattle years-risk, respectively. Using random effect logistic regression as the analytical method, the factors (variables) of age, source of animals and geographic location were hypothesised to be associated with sero-positivity of Babesia bovis in the two regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Althoug further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the Wald, score, and likelihood ratio asymptotic test statistics, we analyze a multivariate null intercept errors-in-variables regression model, where the explanatory and the response variables are subject to measurement errors, and a possible structure of dependency between the measurements taken within the same individual are incorporated, representing a longitudinal structure. This model was proposed by Aoki et al. (2003b) and analyzed under the bayesian approach. In this article, considering the classical approach, we analyze asymptotic test statistics and present a simulation study to compare the behavior of the three test statistics for different sample sizes, parameter values and nominal levels of the test. Also, closed form expressions for the score function and the Fisher information matrix are presented. We consider two real numerical illustrations, the odontological data set from Hadgu and Koch (1999), and a quality control data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizando uma adaptação do modelo de Telles e Mussolini (2014), o presente trabalho busca discutir as caracterizações da matriz tributária, discutindo como as variações na matriz tributária podem impactar na política fiscal. Discute-se com base na diferenciação dos impostos em cinco grupos, a saber: impostos sobre salários, impostos sobre investimentos, impostos sobre consumo, impostos sobre renda e riqueza, e impostos sobre comércio internacional, a partir dos quais argumenta-se quais seus impactos para a política fiscal, para a interação das variáveis econômicas e a evolução destas variáveis, assim como a relação entre a preferência por uma determinada estrutura tributária e o endividamento de um país. Após a discussão teórica, faz-se uma análise descritiva da evolução destas variáveis tributárias para cada categoria de tributo, relacionando a sua evolução no tempo para um grupo de 64 países, tomados a partir do trabalho de Telles e Mussolini (2014), assim como relacionando a sua evolução intertemporal. Por fim, faz-se uma análise da estrutura tributária destes países, discutindo, na análise dos dados em painel, os resultados para as estimativas em modelos de efeitos fixos e efeitos aleatórios, os resultados da estimação pelo modelo Arellano-Bond, e utilizando-se a abordagem instrumental pelo Método Generalizado dos Momentos, onde se conclui que a taxação sobre a riqueza e a taxação sobre o comércio internacional com fins de financiar o excesso de gastos do governo impacta de forma negativa na trajetória de crescimento, entre outros resultados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To investigate the effects of levomepromazine and different desflurane concentrations upon electrocardiographic variables.Animals Twenty adult mongrel dogs of both sexes weighing 6-28 kg.Methods Dogs were divided into two groups of 10 animals. Group I received 1 mg kg(-1) lV of levomepromazine and 15 minutes later anesthesia was induced with propofol (3 mg kg(-1) IV). Desflurane end-tidal concentration was set at 1.6 MAC. After 30 minutes at this concentration, measurements were taken and the end-tidal concentration was reduced to 1.4 MAC. Thereafter, it was reduced to 1.2 and then 1.0 MAC at 1.5-minute intervals. The same procedure was followed for group 2, except that levomepromazine was replaced with 0.2 mL kg(-1) of 0.9% saline solution and more propofol was needed for induction (7 mg kg(-1)). The animals' body temperature was maintained between 38.3 and 39 degreesC using a heating pad. The electrocardiographic tracing was obtained from lead II throughout the experimental period. The measurements were taken immediately before the administration of levomepromazine or placebo (T-1), 15 minutes after pre-medication (T-2) and 30 minutes after the establishment of 1.6 MAC (T-3)The other measurements were made at the concentrations of 1.4, 1.2, and 1.0 MAC, respectively (T4-6). The numerical data were submitted to analysis of variance plus F-test (p < 0.05).Results the dogs that received levomepromazine had a decrease in heart rate. However, in both groups it increased with desflurane administration. Levomepromazine, in association with desflurane, did not induce significant electrocardiographic changes, and all mean values (except P-wave duration) were within the reference range for this species.Conclusions and clinical relevance This study documented that levomepromazine, in association with desflurane, does not induce significant changes in electrocardiographic variables, suggesting that this drug combination has minimal effect on myocardial conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)