327 resultados para Biomedicine
Resumo:
Esse trabalho propõe uma reflexão sobre a relação entre a organização da estrutura hospitalar baseada em sua divisão por enfermarias de especialidades e a perpetuação da lógica fragmentadora própria da Biomedicina, racionalidade médica hegemônica ocidental. O campo estudado foi o Hospital Universitário Pedro Ernesto. Através de entrevistas semiestruturadas com médicos clínicos, especialistas e profissionais responsáveis pela regulação de vagas desse hospital é discutida a existência de dois discursos diferentes: o discurso clínico e o discurso especialista. A partir da análise dessas entrevistas, foi apontada e debatida a profunda relação entre esses discursos, a estrutura hospitalar e a assistência médica oferecida aos pacientes. A análise realizada evidencia que embora os dois discursos estejam absolutamente inseridos no paradigma biomédico, a clínica médica se identifica e é identificada como responsável pelo paciente como um todo, enquanto as especialidades são reconhecidas como responsáveis apenas por uma determinada parte. Essa diferença apresentou influência tanto na forma de cuidar do paciente, como na função de cada serviço dentro do hospital. As enfermarias de clínica se caracterizaram por serem setores consensualmente capazes de conduzir satisfatoriamente a maioria dos pacientes.Se por um lado a abrangência da clínica é motivo de orgulho para os clínicos, por outro, a falta de autonomia decorrente dessa característica determina um sentimento de depreciação por parte desses profissionais. Esse trabalho foi realizado sob perspectiva hermenêutica filosófica proposta por Hans-Georg Gadamer e com o auxílio dos conceitos de paradigma proposto por Thomas Kuhn e estilo de pensamento elaborado por Ludwik Fleck.
Resumo:
Melanocortin 1 receptor (MC1R) gene plays a key role in determining coat color in several species, including the cattle. However, up to now there is no report regarding the MC1R gene and the potential association of its mutations with coat colors in yak (
Resumo:
Universities currently need to satisfy the demands of different audiences. In light of the increasing policy emphasis on "third mission" activities, universities are attempting to incorporate these into their traditional missions of teaching and research. University strategies to accomplishing its traditional missions are well-honed and routinized, but the incorporation of the third mission is posing important strategic and managerial challenges for universities. This study explores the relationship between university-business collaborations and academic excellence in order to examine the extent to which academic institutions can balance these objectives. Based on data from the UK Research Assessment Exercise 2001 at the level of the university department, we find no systematic positive or negative relationship between scientific excellence and engagement with industry. Across the disciplinary fields reported in the 2001 Research Assessment Exercise (i. e. engineering, hard sciences, biomedicine, social sciences and the humanities) the relationship between academic excellence and engagement with business is largely contingent on the institutional context of the university department. This paper adds to the growing body of literature on university engagement with business by examining this activity for the social sciences and the humanities. Our findings have important implications for the strategic management of university departments and for higher education policy related to measuring the performance of higher education research institutions. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Resumo:
The micro-beam irradiation system, which focuses the beam down to micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion microbeam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by a magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10MeV/u) to intermediate energy (100MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation.
Resumo:
Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.
Resumo:
Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors.
Resumo:
We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.
Resumo:
Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.
Resumo:
X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.
Resumo:
Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., Zwiggelaar, R. (2008). A novel breast tissue density classification framework. IEEE Transactions on Information Technology in BioMedicine, 12 (1), 55-65
Resumo:
Introduction: Traditional medicines are one of the most important means of achieving total health care coverage globally, and their importance in Tanzania extends beyond the impoverished rural areas. Their use remains high even in urban settings among the educated middle and upper classes. They are a critical component healthcare in Tanzania, but they also can have harmful side effects. Therefore we sought to understand the decision-making and reasoning processes by building an explanatory model for the use of traditional medicines in Tanzania.
Methods: We conducted a mixed-methods study between December 2013 and June 2014 in the Kilimanjaro Region of Tanzania. Using purposive sampling methods, we conducted focus group discussions (FGDs) and in-depth interviews of key informants, and the qualitative data were analyzed using an inductive Framework Method. A structured survey was created, piloted, and then administered it to a random sample of adults. We reported upon the reliability and validity of the structured survey, and we used triangulation from multiple sources to synthesize the qualitative and quantitative data.
Results: A total of five FGDs composed of 59 participants and 27 in-depth interviews were conducted in total. 16 of the in-depth interviews were with self-described traditional practitioners or herbal vendors. We identified five major thematic categories that relate to the decision to use traditional medicines in Kilimanjaro: healthcare delivery, disease understanding, credibility of the traditional practices, health status, and strong cultural beliefs.
A total of 473 participants (24.1% male) completed the structured survey. The most common reasons for taking traditional medicines were that they are more affordable (14%, 12.0-16.0), failure of hospital medicines (13%, 11.1-15.0), they work better (12%, 10.7-14.4), they are easier
to obtain (11%, 9.48-13.1), they are found naturally or free (8%, 6.56-9.68), hospital medicines have too many chemical (8%, 6.33-9.40), and they have fewer side effects (8%, 6.25-9.30). The most common uses of traditional medicines were for symptomatic conditions (42%), chronic diseases (14%), reproductive problems (11%), and malaria and febrile illnesses (10%). Participants currently taking hospital medicines for chronic conditions were nearly twice as likely to report traditional medicines usage in the past year (RR 1.97, p=0.05).
Conclusions: We built broad explanatory model for the use of traditional medicines in Kilimanjaro. The use of traditional medicines is not limited to rural or low socioeconomic populations and concurrent use of traditional medicines and biomedicine is high with frequent ethnomedical doctor shopping. Our model provides a working framework for understanding the complex interactions between biomedicine and traditional medicine. Future disease management and treatment programs will benefit from this understanding, and it can lead to synergistic policies with more effective implementation.
Resumo:
Chemotherapy and radiotherapy induce premature ovarian failure in many patients treated for oncological or benign diseases. The present paper reviews the risk of developing premature ovarian failure according to the type of treatment and the different options to preserve fertility, focusing on the cryopreservation of ovarian tissue. This technique constitutes a promising approach to preserve the fertility of young patients and offers the advantage of storing a large number of follicles that could be subsequently transplanted or cultured in vitro to obtain mature oocytes. Based on 34 requests, from which 19 were performed, the feasibility of the ovarian cryopreservation procedure is evaluated. The medical and ethical approaches of this protocol are also discussed. Cryopreservation of ovarian tissue constitutes new hope for many patients, but must still be kept for selected cases, with a significant risk of premature ovarian failure after treatments such as bone marrow transplantation.