1000 resultados para Algoritmos genéticos -- TFM
Resumo:
Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.
Resumo:
O problema de planejamento de rotas de robôs móveis consiste em determinar a melhor rota para um robô, em um ambiente estático e/ou dinâmico, que seja capaz de deslocá-lo de um ponto inicial até e um ponto final, também em conhecido como estado objetivo. O presente trabalho emprega o uso de uma abordagem baseada em Algoritmos Genéticos para o planejamento de rotas de múltiplos robôs em um ambiente complexo composto por obstáculos fixos e obstáculos moveis. Através da implementação do modelo no software do NetLogo, uma ferramenta utilizada em simulações de aplicações multiagentes, possibilitou-se a modelagem de robôs e obstáculos presentes no ambiente como agentes interativos, viabilizando assim o desenvolvimento de processos de detecção e desvio de obstáculos. A abordagem empregada busca pela melhor rota para robôs e apresenta um modelo composto pelos operadores básicos de reprodução e mutação, acrescido de um novo operador duplo de refinamento capaz de aperfeiçoar as melhores soluções encontradas através da eliminação de movimentos inúteis. Além disso, o calculo da rota de cada robô adota um método de geração de subtrechos, ou seja, não calcula apenas uma unica rota que conecta os pontos inicial e final do cenário, mas sim várias pequenas subrotas que conectadas formam um caminho único capaz de levar o robô ao estado objetivo. Neste trabalho foram desenvolvidos dois cenários, para avaliação da sua escalabilidade: o primeiro consiste em um cenário simples composto apenas por um robô, um obstáculo movel e alguns obstáculos fixos; já o segundo, apresenta um cenário mais robusto, mais amplo, composto por múltiplos robôs e diversos obstáculos fixos e moveis. Ao final, testes de desempenho comparativos foram efetuados entre a abordagem baseada em Algoritmos Genéticos e o Algoritmo A*. Como critério de comparação foi utilizado o tamanho das rotas obtidas nas vinte simulações executadas em cada abordagem. A analise dos resultados foi especificada através do Teste t de Student.
Resumo:
Uma das áreas de aplicação da optimização é a Engenharia Biomédica, pois a optimização intervém no estudo de próteses e implantes, na reconstrução tomográfica, na mecânica experimental, entre outras aplicações. Este projecto tem como principal objectivo a criação de um novo programa de marcação de exames médicos a fim de minimizar o tempo de espera na realização dos mesmos. É efectuada uma breve referência à teoria da optimização bem como à optimização linear e não-linear, aos algoritmos genéticos, que foram usados para a realização deste trabalho. É também apresentado um caso de estudo, formulado como um problema de optimização não linear com restrições. Com este estudo verificou-se que o escalonamento de exames médicos nunca poderá ser optimizado a 100por cento devido à quantidade de variáveis existentes, sendo que algumas delas não são passíveis de prever com antecedência.
Resumo:
El objetivo de este proyecto es desarrollar una aplicación multiplataforma que, dadas las preferencias de los clientes por las posibles características que se pueden dar a un producto, y dados los productos que vende la competencia, decida las características del producto a vender para que éste obtenga el mayor número de clientes, bien de manera inmediata, o bien a largo plazo. La solución óptima de este tipo de problemas es intratable, ya que no se pueden resolver en tiempo polinómico, por lo que nosotros utilizamos soluciones heurísticas, concretamente: algoritmos genéticos, algoritmos minimax, algoritmos de aprendizaje automático y algoritmos de interpolación. Además, realizamos un caso de estudio con datos reales obtenidos a través de una serie de encuestas utilizando una plataforma web, concretamente de la empresa Feebbo, que nos permitió obtener resultados sobre las preferencias de más de 500 encuestados. Las preguntas de las encuestas se centraron en un tipo de producto en particular, en nuestro caso teléfonos móviles.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de dout. em Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2004
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
Desde el inicio de las organizaciones han existido modelos de control rígidos como los sistemas mecanicistas y formales en donde la perspectiva racional sobresale y no se tienen en cuenta los aspectos humanos en el diseño de los sistemas. Estos modelos de control rígidos, estandarizados y centralizados suponen un problema para el adecuado desarrollo estratégico y operativo de las organizaciones. Sin embargo, desde los sistemas biológicos se pueden observar aportes de autores que destacan la ausencia de control y su consecuente funcionamiento armónico a través de propiedades como la auto-organización y la emergencia. De esta forma, este artículo de revisión tiene como objetivo identificar las aproximaciones teóricas que se han realizado en torno a los principales aportes que los modelos biológicos han hecho a la gestión administrativa y específicamente al control organizacional mediante el análisis de la producción bibliográfica realizada en los últimos 10 años.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.
Resumo:
The genetic algorithm is a very efficient tool to solve optimization problems. On the other hand, the classroom assignation in any education center, particularly those that does not have enough quantity of classrooms for the courseʼs demand converts it in an optimization problem. In the Department of Computer Science (Universidad de Costa Rica) this work is carried out manually every six months. Besides, at least two persons of the department are dedicated full time to this labor for one week or more. The present article describes an automatic solution that not only reduces the response time to seconds but it also finds an optimal solution in the majority of the cases. In addition gives flexibility in using the program when the information involved with classroom assignation has to be updated. The interface is simple an easy to use.
Introdução ao estudo da paralelização de algoritmos de planeamento operacional com métodos genéticos
Resumo:
Tese de mestrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 199
Resumo:
O objetivo deste trabalho foi avaliar a eficiência, na construção de mapas genéticos, dos algoritmos seriação e delineação rápida em cadeia, além dos critérios para avaliação de ordens: produto mínimo das frações de recombinação adjacentes, soma mínima das frações de recombinação adjacentes e soma máxima dos LOD Scores adjacentes, quando usados com o algoritmo de verificação de erros " ripple" . Foi simulado um mapa com 24 marcadores, posicionados aleatoriamente a distâncias variadas, com média 10 cM. Por meio do método Monte Carlo, foram obtidas 1.000 populações de retrocruzamento e 1.000 populações F2, com 200 indivíduos cada, e diferentes combinações de marcadores dominantes e co-dominantes (100% co-dominantes, 100% dominantes e mistura com 50% co-dominantes e 50% dominantes). Foi, também, simulada a perda de 25, 50 e 75% dos dados. Observou-se que os dois algoritmos avaliados tiveram desempenho semelhante e foram sensíveis à presença de dados perdidos e à presença de marcadores dominantes; esta última dificultou a obtenção de estimativas com boa acurácia, tanto da ordem quanto da distância. Além disso, observou-se que o algoritmo " ripple" geralmente aumenta o número de ordens corretas e pode ser combinado com os critérios soma mínima das frações de recombinação adjacentes e produto mínimo das frações de recombinação adjacentes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE