1000 resultados para Air showers
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Aims: To investigate methods for the recovery of airborne bacteria within pig sheds and to then use the appropriate methods to determine the levels of heterotrophs and Escherichia coli in the air within sheds. Methods and Results: AGI-30 impingers and a six-stage Andersen multi-stage sampler (AMS) were used for the collection of aerosols. Betaine and catalase were added to impinger collection fluid and the agar plates used in the AMS. Suitable media for enumerating E. coli with the Andersen sampler were also evaluated. The addition of betaine and catalase gave no marked increase in the recovery of heterotrophs or E. coli. No marked differences were found in the media used for enumeration of E. coli. The levels of heterotrophs and E. coli in three piggeries, during normal pig activities, were 2Æ2 · 105 and 21 CFU m)3 respectively. Conclusions: The failure of the additives to improve the recovery of either heterotrophs or E. coli suggests that these organisms are not stressed in the piggery environment. The levels of heterotrophs in the air inside the three Queensland piggeries investigated are consistent with those previously reported in other studies. Flushing with ponded effluent had no marked or consistent effect on the heterotroph or E. coli levels. Significance and Impact of the Study: Our work suggests that levels of airborne heterotrophs and E. coli inside pig sheds have no strong link with effluent flushing. It would seem unlikely that any single management activity within a pig shed has a dominant influence on levels of airborne heterotrophs and E. coli
Resumo:
- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.
Resumo:
It has been shown that it is possible to extend the validity of the Townsend breakdown criterion for evaluating the breakdown voltages in the complete pd range in which Paschen curves are available. Evaluation of the breakdown voltages for air (pd=0.0133 to 1400 kPa · cm), N2(pd=0.0313 to 1400 kPa · cm) and SF6 (pd=0.3000 to 1200 kPa · cm) has been done and in most cases the computed values are accurate to ±3% of the measured values. The computations show that it is also possible to estimate the secondary ionization coefficient ¿ in the pd ranges mentioned above.
Resumo:
Novel self-supported natural and synthetic polymer membranes of chitosan-hydroxy ethyl Cellulose-montmorillonite (CS-HEC-MMT) and polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30 degrees C and 70 degrees C and their performances are compared with commercial Nafion membranes. High hater fluxes with desired humidified-air output have been achieved for CS-HEC-MMT and PVA-PSSA hybrid membranes at air-flow rates of 1-10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux With respect to air-flow rates are also quantified for all the membranes. Water flux values for CS-HEC-MMT are less than those for Nafion (R) and PVA-PSSA membranes, but the operational Stability of CS-HEC-MMT membrane is higher than PVA-PSSA and comparable with Nafion (R) both of which can operate up to 70 degrees C at repetitive cycles of humidification.
Resumo:
Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.
Resumo:
Exposure assessment studies conducted in developing countries have been based on fixed-site monitoring to date. This is a major deficiency, leading to errors in estimating the actual exposures, which are a function of time spent and pollutant concentrations in different microenvironments. This study quantified school children’s daily personal exposure to ultrafine particles (UFP) using real-time monitoring, as well as volatile organic compounds (VOCs) and NO2 using passive sampling in rural Bhutan in order to determine the factors driving the exposures. An activity diary was used to track children’s time activity patterns, and difference in mean exposure levels across sex and indoor/outdoor were investigated with ANOVA. 82 children, attending three primary schools participated in this study; S1 and S2 during the wet season and S3 during the dry season. Mean daily UFP exposure (cm-3) was 1.08 × 104 for children attending S1, 9.81 × 103 for S2, and 4.19 × 104 for S3. The mean daily NO2 exposure (µg m-3) was 4.27 for S1, 3.33 for S2 and 5.38 for S3 children. Likewise, children attending S3 also experienced higher daily exposure to a majority of the VOCs than those attending S1 and S2. Time-series of UFP personal exposures provided detailed information on identifying sources of these particles and quantifying their contributions to the total daily exposures for each microenvironment. The highest UFP exposure resulted from cooking/eating, contributing to 64% of the daily exposure, due to firewood combustion in houses using traditional mud cookstoves. The lowest UFP exposures were during the hours that children spent outdoors at school. The outcomes of this study highlight the significant contributions of lifestyle and socio-economic factors in personal exposures and have applications in environmental risk assessment and household air pollution mitigation in Bhutan.