986 resultados para Aeroelascity, Optimization, Uncertainty
Resumo:
While existing multi-biometic Dempster-Shafer the- ory fusion approaches have demonstrated promising perfor- mance, they do not model the uncertainty appropriately, sug- gesting that further improvement can be achieved. This research seeks to develop a unified framework for multimodal biometric fusion to take advantage of the uncertainty concept of Dempster- Shafer theory, improving the performance of multi-biometric authentication systems. Modeling uncertainty as a function of uncertainty factors affecting the recognition performance of the biometric systems helps to address the uncertainty of the data and the confidence of the fusion outcome. A weighted combination of quality measures and classifiers performance (Equal Error Rate) are proposed to encode the uncertainty concept to improve the fusion. We also found that quality measures contribute unequally to the recognition performance, thus selecting only significant factors and fusing them with a Dempster-Shafer approach to generate an overall quality score play an important role in the success of uncertainty modeling. The proposed approach achieved a competitive performance (approximate 1% EER) in comparison with other Dempster-Shafer based approaches and other conventional fusion approaches.
Resumo:
This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.
Resumo:
This paper offers an uncertainty quantification (UQ) study applied to the performance analysis of the ERCOFTAC conical diffuser. A deterministic CFD solver is coupled with a non-statistical generalised Polynomial Chaos(gPC)representation based on a pseudo-spectral projection method. Such approach has the advantage to not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic field. The stochactic results highlihgt the importance of the inlet velocity uncertainties on the pressure recovery both alone and when coupled with a second uncertain variable. From a theoretical point of view, we investigate the possibility to build our gPC representation on arbitray grid, thus increasing the flexibility of the stochastic framework.
Resumo:
Australia is a multicultural immigrant society created by public policy and direct state action over a period of two hundred years. It is now one of the world’s most diverse societies. However, like many nations, Australia faces challenges to managing ‘unauthorized arrivals’ who claim to be refugees. The issue of how to deal with unauthorized arrivals is controversial and highly emotive as it challenges public policy and government capacity to manage the multicultural ‘mix’ of Australia’s population. It also raises questions about border security. Given that it is impossible to discern beforehand who is a ‘proper’ refugee and who is not, claims to refugee status by unauthorised arrivals in Australia need to be tested against international convention criteria devised by the United Nations High Commissioner for Refugees (UNHCR). There are no simple solutions to controversial questions such as how and where should unauthorised arrivals, and the children accompanying them, be housed whilst their claims are investigated? Moreover, as this issue continues to prompt division and heated debate in Australian society, teachers new to the profession are often reluctant to explore it in the classroom. However, there are opportunities in national and state curriculum documents for the values dimensions of curriculum inquiries into controversial issues such as this to be addressed. For example, the most recent national statement on the goals for schooling in Australia, the Melbourne Declaration (MCEETYA, 2008), makes clear that Australian students need to be prepared for the challenges of the 21st century and to develop the capacity for innovation and complex problem-solving. The Melbourne Declaration informs the first national curriculum to be implemented in the Australian states and territories, and all other national and state initiatives. Its focus on developing active and informed citizens who can contribute to a socially cohesive society implies a capacity to deal with a range of issues associated with cultural diversity, This chapter explores the ways in which pre-service and early career teachers in one Australian state reflect upon curriculum opportunities to address controversial issues in the social sciences and history classroom. As part of their pre-service education, all the participants in this study completed a final year social science curriculum method unit that embedded a range of controversial issues, including the placement of children in Australian Immigration Detention Centres (IDCs), for investigation. By drawing from interviews and focus groups conducted with different cohorts of pre-service teachers in their final year of university study and beginning years of teaching, this chapter analyses the range of perceptions about how controversial issues can be examined in the secondary classroom as part of fostering informed citizenship. The discussion and analysis of the qualitative data in this study makes no claims for the representativeness of its findings, rather, a range of beginner teacher insights into a complex and important facet of teaching in a period of change and uncertainty is offered.
Resumo:
While the philosophical motivation behind Civil Infrastructure Management Systems is to achieve optimal level of service at a minimum cost, the allocation of scarce resources among competing alternatives is still a matter of debate. It appears to be widely accepted that results from tradeoff analysis can be measured by the degree of accomplishment of the objectives. Road management systems not only deal with different asset types but also with conflicting objectives. This paper presents a case study of lifecycle optimization with tradeoff analysis for a road corridor in New Brunswick. Objectives of the study included condition of bridge and roads and road safety. A road safety index was created based on potential for improvement. Road condition was based on roughness, rutting and cracking. Initial results show lack of sustainability in bridge performance. Therefore, bridges where broken by components: deck, superstructure and substructure. Visual inspections, in addition to construction age of each bridge, were combined to generate a surrogate apparent age. Two life cycle analysis were conducted; one aimed to minimize overall cost while achieving sustainable results and another one purely for optimization. -used to identify required levels of budget. Such analyses were used to identify the minimum required budget and to demonstrate that with the same amount of money it was possible to achieve better levels of performance. Dominance and performance driven criteria were combined to identify and select an optimal result. It was found that achievement of optimally sustained results is conditioned by the availability of treatments for all asset classes at across their life spans. For the case study a disaggregated bridge condition index was introduced to the original algorithm to attempt to achieve sustainability in all bridges components, however lack of early stage treatments for substructures produce declining trends for such a component.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.