991 resultados para Activated Potassium Currents
Resumo:
The electron-electron scattering contribution to the ultrasonic attenuation in potassium at low temperatures is evaluated using the Landau Fermi liquid theory. The scattering function is evaluated using the approximation suggested by MacDonald and Geldart. The results are compared with theoretically evaluated electron-phonon scattering contributions. The results show that the electron-electron scattering contribution is of the same order as the electron-phonon scattering contribution in the 2–5 K range. Below 2 K the electron-electron scattering predominates.
Resumo:
Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.
Resumo:
The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.
Resumo:
γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.
Resumo:
The addition of activated carbon particles (Darco-G, average size 4.3,μm) is shown to enhance the initial rate of extraction of copper in a Lewis cell by a mixture of α- and β-hydroxyoximes, when the rate of extraction is controlled by resistances in the organic phase. It is likely that the copper complex is adsorbed by carbon near the interace and partially released in the bulk. The enhancing effect of carbon vanishes when toluene is used as a diluent instead of heptane, presumably because toluene preferentially adsorbs on its surface.
Resumo:
Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
A study has been made of the differential thermal analysis of (i) potassium perchlorate in powdered form, (ii) potassium perchlorate in pelletized form, (iii) potassium perchlorate recrystallized from liquid NH3, and (iv) potassium perchlorate preheated for 24 hours at 375°. Pretreatment of potassium perchlorate leads to a desensitization of both endothermic and exothermic processes. Additionally, the pretreatment tends to convert the symmetric exotherm into an asymmetric exotherm due to merging of the two exotherms. An analysis of the factors causing asymmetry in the exotherm has thrown fresh light on the mechanism of thermal decomposition of potassium perchlorate.
Resumo:
Combustion behaviour of ammonium perchlorate-potassium perchlorate pellets is studied using Crawford strand burners. At low concentrations of potassium perchlorate (up to 30 percent potassium perchlorate) the burning rate of ammonium perchlorate-potassium perchlorate condensed mixtures increases with potassium perchlorate content. Above 40 percent potassium perchlorate content, combustion sustenance becomes difficult. Decomposition products of ammonium perchlorate sensitize the melting and subsequent decomposition of potassium perchlorate. The results are explained in terms of the melt layer thickness, flame temperature and the resultant surface temperature, and heat wave penetration into the solid. The study suggests the importance of melt layer on the burning surface in the deflagration behaviour of ammonium perchlorate-potassium perchlorate condensed mixtures
Resumo:
Activation of macrophages by interferon gamma (IFN- ) and the subsequent production of nitric oxide (NO) are critical for the host defence against Salmonella enterica serovar Typhimurium infection. We report here the inhibition of IFN- -induced NO production in RAW264.7 macrophages infected with wild-type Salmonella. This phenomenon was shown to be dependent on the nirC gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN- -treated macrophages infected with a nirC mutant of Salmonella. The nirC mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene in trans. Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the nirC knockout strain compared to the wild-type. This enhanced SPI2 repression in the nirC knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the nirC knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular Salmonella evade killing in activated macrophages by downregulating IFN- -induced NO production, and they highlight the critical role of nirC as a virulence gene.
Resumo:
The oxidation of sodium sulphide in the presence of fine activated carbon particles (4.33 μm) has been studied at 75°C in a foam bed contactor. The existing single-stage model of a foam bed reactor has been modified to take into account the effect of heterogeneous catalyst particles and the absorption in the storage section. The variables studied are catalyst loading, initial sulphide concentration and the average liquid hold-up in the foam bed. It is seen that the rates of oxidation of sodium sulphide are considerably enhanced by an increase in the loading of activated carbon particles. The rate of conversion of sodium sulphide also increases with an increase in the average liquid hold-up in the foam. The modified model predicts these effects fairly well. The contribution of reaction in the storage section is found to be less than 2% of the overall rate of conversion in the contactor.
Resumo:
XPS studies show that the presence of chemisorbed chlorine stabilizes and also enhances molecular dioxygen species on Ag surfaces dosed with either K or Ba. The surface atomic oxygen is found to become depleted on chlorination. The variation in the nature of surface species with respect to temperature shows chlorine-induced diffusion of atomic oxygen into the subsurface region at 300 K. For coverages of potassium up to 8 × 1014 atoms/cm2, preferential chloridation of Ag occurs while at higher potassium coverages, KCl formation is distinctly observed on the surface. In the case of barium, two types of adsorbed chlorine species, Cl(α) and Cl(β), associated with Ag and Ba, respectively, are clearly seen even at low barium coverages. This is believed to be due to the higher valence occupation of barium compared to potassium. The Cl(α) species associated with Ag is found to occupy a preferred site on both K- and Ba-dosed surfaces, involving chemisorptive replacement of O(α) to the subsurface region.
Resumo:
Townsend's primary and secondary ionization coefficients α/p and γ were determined in nitrogen over a wide range of E/p (100-1000 V cm−1 Torr−1) and p (0·4 to 12 Torr at 0 °C) using the pressure variation technique. This technique, along with the Gosseries method of evaluation of ionization coefficients, seems to be more suitable at higher values of E/p, since the errors in these coefficients could be minimized by a suitable selection of p and d, thus eliminating the non-equilibrium ionization condition.