853 resultados para Acrylic Coatings
Resumo:
The adhesion of bovine chondrocytes and human osteoblasts to three titania-based coatings, formed by plasma electrolytic oxidation (PEO), was compared to that on uncoated Ti-6Al-4V substrates, and some comparisons were also made with plasma sprayed hydroxyapatite (HA) coatings. This was done using a centrifuge, with accelerations of up to 160,000 g, so as to induce buoyancy forces that created normal or shear stresses at the interface. It is shown that, on all surfaces, it was easier to remove cells under normal loading than under shear loading. Cell adhesion to the PEO coatings was stronger than that on Ti-6Al-4V and similar to that on HA. Cell proliferation rates were relatively high on one of the PEO coatings, which was virtually free of aluminium, but low on the other two, which contained significant levels of aluminium. It is concluded that the Al-free PEO coating offers promise for application to prosthetic implants.
Resumo:
Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.
Resumo:
We employ a new solution-based coating process, centrifuge coating, to fabricate nanostructured conductive layers over large areas. This coating procedure allows fast quenching of the metastable dispersed state of nanomaterials, which minimizes material wastes by mitigate the effects of particle re-aggregation. Using this method, we fabricate SWNT coatings on different substrates such as PET (polyethylene terephthalate), PDMS (polydimethylsiloxane), and an acrylic elastomer. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2012 IEEE.
Resumo:
Centrifuge coating was implemented to fabricate nanostructured conductive layers through solution processing at room temperature. This coating procedure allows fast evaporation, thereby fixing the nanomaterials in their dispersed state onto a substrate by the centrifuge action. Material wastes were minimized by mitigating the effects of particle reaggregation. Using this method, we fabricate single-wall nanotube coatings on different substrates such as polyethylene terephthalate, polydimethylsiloxane, and an acrylic elastomer with no prior surface modification of the substrate. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2002-2012 IEEE.
Resumo:
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating. © 2014 Elsevier Ltd.
Resumo:
We introduce a double source electron beam evaporation (DSEBET) technique in this paper. The refractive index coatings were fabricated on K9 glass substrate by adjusting the evaporation rates of two independent sources. The coatings, which were described by atomic force microscopy (AFM), show good compactness and homogeneity. The antireflective (AR) coatings were fabricated on Superluminescent Diodes (SLD) by DSEBET. The hybrid AR coatings on the facets of SLD were prepared in evaporation rates of 0.22nm/s and 0.75nm/s for silicon and silicon dioxide, respectively. The results of AFM and spectral performance of coated SLD show that DSEBET has a promising future in preparing the coatings on optoelectronic devices.