560 resultados para Acidos graxos
Resumo:
Com o objetivo de avaliar a influência do amido dietético sobre o rendimento produtivo e a atividade microbiana cecal de coelhos em crescimento, quatro dietas experimentais foram elaboradas de forma a conter níveis crescentes de amido (23, 28, 33 e 38% de amido total na base da MS), os quais foram fornecidos a 32 coelhos da raça Nova Zelândia Branco, distribuídos em gaiolas de engorda individuais, seguindo um delineamento em blocos casualizados. Houve efeito linear decrescente para consumo e conversão alimentar, em que valores de 108,67 g/d e 3,216, respectivamente, foram obtidos para os animais alimentados com 38% de amido dietético. No entanto, o ganho de peso e o rendimento de carcaça não foram influenciados pelos tratamentos. Por outro lado, os valores de pH, as concentrações totais e as proporções molares dos ácidos graxos voláteis não foram influenciados pelos tratamentos, porém, para o ácido propiônico, houve efeito linear decrescente, sendo a maior proporção molar (12,06%) verificada no conteúdo cecal de coelhos alimentados com 23% de amido dietético. O milho-grão apresentou maior influência sobre a atividade microbiana cecal que o amido de milho purificado, porém, sem alterar o desempenho e rendimento de carcaça.
Resumo:
Objetivou-se avaliar o efeito do uso de monensina, complexo de leveduras, ácidos graxos poliinsaturados e aminoácidos no consumo de matéria seca e nutrientes, na estimativa da digestibilidade ruminal, nos parâmetros de fermentação ruminal (pH, concentração de nitrogênio amoniacal e de ácidos graxos de cadeia curta), na população de protozoários e na produção de metano. Foram utilizados seis bovinos e com peso corporal de 530 ± 15 kg, recebendo complexo de leveduras, ácidos graxos poliinsaturados e aminoácidos (5 g/dia); monensina (5 g/dia); caulim (5 g/dia), usado como controle adicionado à dieta composta de feno de capim-tifton 85 (Cynodon spp.); e concentrado, na relação 80:20. O delineamento experimental adotado para análise do consumo e da digestibilidade foi o de blocos completos casualizados e, para análise dos parâmetros ruminais e da produção de metano, o de parcelas subdivididas. O consumo foi influenciado pelo uso de monensina na dieta, mas não diferiu entre os aditivos. As digestibilidades da matéria seca e dos nutrientes não foram influenciadas pelo fornecimento dos aditivos. A relação acetato:propionato nos animais alimentados com a dieta com monensina foi menor que naqueles que receberam o complexo de leveduras e ácidos graxos poliinsaturados e aminoácidos, diminuindo a perda de energia na forma de metano. O pH e a concentração de nitrogênio amoniacal foram adequados para o crescimento bacteriano. A concentração de metano não é alterada pelo uso dos aditivos testados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi avaliar as modificações químicas, microbiológicas e sensoriais do leite caprino pasteurizado e congelado durante armazenamento por 90 dias. Foram realizadas análises para caracterização química da matéria prima utilizada nos experimentos (gordura, acidez Dornic, densidade, extrato seco total, pH e ácidos graxos livres-AGL) e caracterização microbiológica (contagem total, psicrotróficos, coliformes totais e fecais). Utilizou-se pasteurização lenta a 63°±1°C por 30 minutos para as amostras de leite seguido de armazenamento em freezer à temperatura de -18°C±1°C. Nos tempos 0, 30, 60 e 90 dias de congelamento foram efetuadas análises químicas (pH, acidez e AGL), microbiológicas (contagem total, psicrotróficos e coliformes) e sensoriais (sabor e aroma característico, sabor e odor estranho e aparência geral). Também, realizou-se análise sensorial do leite nos tempos zero e com 90 dias de armazenamento, após descongelamento e homogeneização em liquidificador por dois minutos. Foi observado que o congelamento prolongado do leite pasteurizado não alterou significativamente suas características químicas e microbiológicas. Apenas a acidez apresentou decréscimo significativo. No entanto, a qualidade do leite do ponto de vista sensorial apresentou modificações significativas, com perdas de sabor e aroma característicos e declínio acentuado da aparência geral durante o armazenamento. A homogeneização do leite em liquidificador, após o descongelamento melhorou a aparência geral e a aceitação do produto pela equipe de provadores.
Resumo:
Pesquisas visando a redução de perdas de grãos e sementes durante o armazenamento têm ocupado destaque em vários países. Dentro deste contexto, a avaliação da eficácia de um índice de qualidade de boa aplicabilidade, com metodologia simples e de resposta imediata visando tomadas rápidas de decisão é de suma importância. O presente trabalho, conduzido no Laboratório de Processamento de Produtos Agrícolas UNESP, Botucatu/SP teve como objetivos: (a) estabelecer correspondência entre o nível de ácidos graxos livres e as classes de vigor em sementes; (b) estabelecer correspondência entre o nível de ácidos graxos livres e a classificação comercial por tipos, em grãos de arroz (Oryza sativa L.). A correspondência entre o nível de ácidos livres e as classes de vigor em sementes foi avaliada utilizando-se sementes envelhecidas artificialmente, obtendo-se assim níveis diferenciados de vigor. A correspondência entre o nível de ácidos graxos livres e a classificação por tipos, em grãos de arroz, foi realizada utilizando-se amostras de arroz com as porcentagens máximas de grãos defeituosos permitidos pela legislação vigente. Utilizou-se a análise de variância de um delineamento inteiramente ao acaso e, para comparação entre médias, aplicou-se o teste de Tukey ao nível de 5% de probabilidade. Por meio dos resultados obtidos, observou-se que o teste de acidez graxa mostrou-se exeqüível para avaliar o vigor de sementes de arroz. Na pesquisa que buscava uma correspondência entre os valores de acidez graxa e classificação comercial, os dados revelaram a tendência do nível de ácidos graxos livres acompanhar a classificação comercial por tipos.
Resumo:
The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production
Resumo:
The growing utilization of surfactants in several different areas of industry has led to an increase on the studies involving solutions containing this type of molecules. Due to its amphiphilic nature, its molecule presents one polar part and one nonpolar end, which easily interacts with other molecules, being able to modify the media properties. When the concentration in which its monomers are saturated, the airliquid system interface is reached, causing a decrease in interfacial tension. The surfactants from pure fatty acids containing C8, C12 and C16 carbonic chains were synthesized in an alcoholic media using sodium hydroxide. They were characterized via thermal analysis (DTA and DTG) and via infrared spectroscopy, with the intention of observing their purity. Physical and chemical properties such as superficial tension, critical micelle concentration (c.m.c), surfactant excess on surface and Gibbs free energy of micellization were determined in order to understand the behaviour of these molecules with an aqueous media. Pseudo-ternary phase diagrams were obtained aiming to limit the Windsor equilibria conditions so it could be possible to understand how the surfactants carbonic chain size contributes to the microemulsion region. Solutions with known concentrations were prepared to study how the surfactants can influence the dynamic light scattering spectroscopy (DLS) and how the diffusion coefficient is influenced when the media concentration is altered. The results showed the variation on the chain size of the studied surfactant lipophilic part allows the conception of surfactants with similar interfacial properties, but dependent on the size of the lipophilic part of the surfactant. This variation causes the surfactant to have less tendency of microemulsionate oil in water. Another observed result is that the n-alcanes molecule size promoted a decrease on the microemulsion region on the obtained phase diagrams
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
No presente trabalho é descrita a composição de dieta hipoprotéica (6% de proteína) purificada para indução de quadro de desnutrição em roedores. A referida dieta foi padronizada em laboratório a partir de modificação da AIN-93 (documento do American Institute of Nutrition que estabelece os padrões nutricionais para roedores de laboratório), visando a obtenção de animais desnutridos para estudar as alterações metabólicas decorrentes da desnutrição protéica associada a situações como exercício físico, gestação e diabetes. A dieta em questão contém os seguintes componentes (g/ kg): amido de milho (480), caseína (71,5), dextrina de milho (159), sacarose (121), óleo de soja (70), microcelulose (50), mistura mineral AIN-93-G-MX (35), mistura de vitaminas AIN-93-G-VX, (10), L-cistina (1), cloridrato de colina (2,5). Ratos alimentados cronicamente com a dieta apresentaram sinais comumente presentes na desnutrição protéica humana e de animais de laboratório: redução do ganho de peso, hipoproteinemia, hipoalbuminemia, elevação dos ácidos graxos livres séricos e do glicogênio hepático.
Resumo:
The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents
Resumo:
The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid
Resumo:
The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation
Resumo:
Recently, marine organisms have attracted attention because of the complexity and potent biological activity from your secondary metabolites. Our planet has 80% it surface covered by oceans and seas, therefore, housing a wide number of different forms of life, among them, the sponges. These sessile and filtrating animals, according to numerous researches, come showing like true chemistry factories. The substances from these animals, sometimes show as news targets to therapeutics agents, and some countries has already use them for treatment of some diseases. Further of the secondary metabolites, the polysaccharides of marine origin also have been target of studies, because the presence of the sulfates groups in its molecules. Polysaccharides with differents biological activities have been related in a large number of researches. Actually, many studies show the sponges as source of promising medicine. These studies inspire new researches, because the few number of sponges species studied until now. Because of that, the present work shows the chemistry prospection of the sponge Callyspongia vaginalis. Chromatographic methods in silica gel allowed the isolations of two secondary metabolites: the known β- sitosterol and a ceramide, no reported in the genus Callyspongia, previously. The analysis of the their lipid extracts show different kinds of fatty acids with a variety of chain length (saponifiable fraction), and others metabolites like Lupenone and stigmasterol, also unprecedented in the genus. The Polysaccharide characterization and the elucidation of the secondary metabolites acquired through of chromatography analysis (CC, molecular exclusion) and spectrometric (NMR 1H and 13C, mass, IR), respectively and comparison with literature data