926 resultados para ATOMIC-FORCE MICROSCOPY
Resumo:
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.
Resumo:
Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.
Resumo:
The stiffness of tumor cells varies during cancer progression. In particular, metastatic carcinoma cells analyzed by Atomic Force Microscopy (AFM) appear softer than non-invasive and normal cells. Here we examined by AFM how the stiffness of melanoma cells varies during progression from non-invasive Radial Growth Phase (RGP) to invasive Vertical Growth Phase (VGP) and to metastatic tumors. We show that transformation of melanocytes to RGP and to VGP cells is characterized by decreased cell stiffness. However, further progression to metastatic melanoma is accompanied by increased cell stiffness and the acquisition of higher plasticity by tumor cells, which is manifested by their ability to greatly augment or reduce their stiffness in response to diverse adhesion conditions. We conclude that increased plasticity, rather than decreased stiffness as suggested for other tumor types, is a marker of melanoma malignancy. These findings advise caution about the potential use of AFM for melanoma diagnosis. FROM THE CLINICAL EDITOR: This study investigates the changes to cellular stiffness in metastatic melanoma cells examined via atomic force microscopy. The results demonstrate that increased plasticity is a marker of melanoma malignancy, as opposed to decreased stiffness.
Resumo:
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA-DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.
Resumo:
A recently developed technique, namely multiple beam interference microscopy, has been applied to investigate the morphology of the parasite Toxoplasma gondii for the first time. The interference pattern obtained from the multiple internal reflection of a T. gondii, sandwiched between a glass plate and a cover plate, was focused on the objective of a conventional microscope. Because of the enhance contrast, several details of sub cellular structure and separating compartments are clearly visible. Details reveal the presence of a nucleus, lipid body, dense granule, rhoptry and amylopectin. The wall thickness of the membrane of the lipid body and the amylopectin is of the order of 0.02 µm and can be clearly distinguished with the help of the present technique. The same parasite has also been examined with the help of atomic force microscopy, and because of its thick membrane, the inner structural details were not observed at all. Sub cellular details of T. gondii observed with the present technique have been reported earlier only by low amplification transmission electron microscopy and not by any optical microscopic technique.
Resumo:
Stiffness tomography is a new atomic force microscopy imaging technique that allows highlighting structures located underneath the surface of the sample. In this imaging mode, such structures are identified by investigating their mechanical properties. We present here, for the first time, a description of the use of this technique to acquire detailed stiffness maps of fixed and living macrophages. Indeed, the mechanical properties of several macrophages were studied through stiffness tomography imaging, allowing some insight of the structures lying below the cell's surface. Through these investigations, we were able to evidence the presence and properties of stiff column-like features located underneath the cell membrane. To our knowledge, this is the first evidence of the presence, underneath the cell membrane, of such stiff features, which are in dimension and form compatible with phagosomes. Moreover, by exposing the cells to cytochalasin, we were able to study the induced modifications, obtaining an indication of the location and mechanical properties of the actin cytoskeleton. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Central to the biological function of microtubules is their ability to modify their length which occurs by addition and removal of subunits at the ends of the polymer, both in vivo and in vitro. This dynamic behavior is strongly influenced by temperature. Here, we show that the lateral interaction between tubulin subunits forming microtubule is strongly temperature dependent. Microtubules deposited on prefabricated substrates were deformed in an atomic force microscope during imaging, in two different experimental geometries. Microtubules were modeled as anisotropic, with the Young's modulus corresponding to the resistance of protofilaments to stretching and the shear modulus describing the weak interaction between the protofilaments. Measurements involving radial compression of microtubules deposited on flat mica confirm that microtubule elasticity depends on the temperature. Bending measurements performed on microtubules deposited on lithographically fabricated substrates show that this temperature dependence is due to changing shear modulus, implying that the lateral interaction between the protofilaments is strongly determined by the temperature. These measurements are in good agreement with previously reported measurements of the disassembly rate of microtubules, demonstrating that the mechanical and dynamic properties of microtubules are closely related.
Resumo:
There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.
Resumo:
Cancer is a major health issue that absorbs the attention of a large part of the biomedical research. Intercalating agents bind to DNA molecules and can inhibit their synthesis and transcription; thus, they are increasingly used as drugs to fight cancer. In this work, we show how atomic force microscopy in liquid can characterize, through time-lapse imaging, the dynamical influence of intercalating agents on the supercoiling of DNA, improving our understanding of the drug's effect.
Resumo:
Although the assembly of a ternary complex between the SNARE proteins syntaxin-1, SNAP25 and VAMP2 is known to be crucial for insulin exocytosis, the mechanisms controlling this key event are poorly understood. We found that pancreatic beta-cells express different isoforms of tomosyn-1, a syntaxin-1-binding protein possessing a SNARE-like motif. Using atomic force microscopy we show that the SNARE-like domain of tomosyn-1 can form a complex with syntaxin-1 and SNAP25 but displays binding forces that are weaker than those observed for VAMP2 (237+/-13 versus 279+/-3 pN). In pancreatic beta-cells tomosyn-1 was found to be concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of tomosyn-1 in the rat beta-cell line INS-1E by RNA interference did not affect the number of secretory granules docked at the plasma membrane but led to a reduction in stimulus-induced exocytosis. Replacement of endogenous tomosyn-1 with mouse tomosyn-1, which differs in the nucleotide sequence from its rat homologue and escapes silencing, restored a normal secretory rate. Taken together, our data suggest that tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis of pancreatic beta-cells in response to insulin secretagogues.
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.