965 resultados para AGULHAS LEAKAGE
Resumo:
Data leakage is a serious issue and can result in the loss of sensitive data, compromising user accounts and details, potentially affecting millions of internet users. This paper contributes to research in online security and reducing personal footprint by evaluating the levels of privacy provided by the Firefox browser. The aim of identifying conditions that would minimize data leakage and maximize data privacy is addressed by assessing and comparing data leakage in the four possible browsing modes: normal and private modes using a browser installed on the host PC or using a portable browser from a connected USB device respectively. To provide a firm foundation for analysis, a series of carefully designed, pre-planned browsing sessions were repeated in each of the various modes of Firefox. This included low RAM environments to determine any effects low RAM may have on browser data leakage. The results show that considerable data leakage may occur within Firefox. In normal mode, all of the browsing information is stored within the Mozilla profile folder in Firefox-specific SQLite databases and sessionstore.js. While passwords were not stored as plain text, other confidential information such as credit card numbers could be recovered from the Form history under certain conditions. There is no difference when using a portable browser in normal mode, except that the Mozilla profile folder is located on the USB device rather than the host's hard disk. By comparison, private browsing reduces data leakage. Our findings confirm that no information is written to the Firefox-related locations on the hard disk or USB device during private browsing, implying that no deletion would be necessary and no remnants of data would be forensically recoverable from unallocated space. However, two aspects of data leakage occurred equally in all four browsing modes. Firstly, all of the browsing history was stored in the live RAM and was therefore accessible while the browser remained open. Secondly, in low RAM situations, the operating system caches out RAM to pagefile.sys on the host's hard disk. Irrespective of the browsing mode used, this may include Firefox history elements which can then remain forensically recoverable for considerable time.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.
Resumo:
Bleeding complications in dengue may occur irrespective of the presence of plasma leakage. We compared plasma levels of modulators of the endothelial barrier among three dengue groups: bleedings without plasma leakage, dengue hemorrhagic fever, and non-complicated dengue. The aim was to evaluate whether the presence of subtle alterations in microvascular permeability could be detected in bleeding patients. Plasma levels of VEGF-A and its soluble receptors were not associated with the occurrence of bleeding in patients without plasma leakage. These results provide additional rationale for considering bleeding as a complication independent of endothelial barrier breakdown, as proposed by the 2009 WHO classification.
Resumo:
The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.
Resumo:
The inflation pressure of the endotracheal tube cuff can cause ischemia of the tracheal mucosa at high pressures; thus, it can cause important tracheal morbidity and tracheal microaspiration of the oropharyngeal secretion, or it can even cause pneumonia associated with mechanical ventilation if the pressure of the cuff is insufficient. In order to investigate the effectiveness of the RUSCH® 7.5 mm endotracheal tube cuff, this study was designed to investigate the physical and mechanical aspects of the cuff in contact with the trachea. For this end, we developed an in vitro experimental model to assess the flow of dye (methylene blue) by the inflated cuff on the wall of the artificial material. We also designed an in vivo study with 12 Large White pigs under endotracheal intubation. We instilled the same dye in the oral cavity of the animals, and we analyzed the presence or not of leakage in the trachea after the region of the cuff after their deaths (animal sacrifice). All cuffs were inflated at the pressure of 30 cmH2O. We observed the passage of fluids through the cuff in all in vitro and in vivo experimental models. We conclude that, as well as several other cuff models in the literature, the RUSCH® 7.5 mm tube cuffs are also not able to completely seal the trachea and thus prevent aspiration of oropharyngeal secretions. Other prevention measures should be taken.
Correlation between margin fit and microleakage in complete crowns cemented with three luting agents
Resumo:
Microleakage can be related to margin misfit. Also, traditional microleakage techniques are time-consuming. This study evaluated the existence of correlation between in vitro margin fit and a new microleakage technique for complete crowns cemented with 3 different luting agents. Thirty human premolars were prepared for full-coverage crowns with a convergence angle of 6 degrees, chamfer margin of 1.2 mm circumferentially, and occlusal reduction of 1.5 mm. Ni-Cr cast crowns were cemented with either zinc phosphate (ZP) (S.S. White), resin-modified glass-ionomer (RMGI) (Rely X Luting Cement) or a resin-based luting agent (RC) (Enforce). Margin fit (seating discrepancy and margin gap) was evaluated according to criteria in the literature under microscope with 0.001 mm accuracy. After thermal cycling, crowns were longitudinally sectioned and microleakage scores at tooth-cement interface were obtained and recorded at ×100 magnification. Margin fit parameters were compared with the one-way ANOVA test and microleakage scores with Kruskal-Wallis and Dunn's tests (alpha=0.05). Correlation between margin fit and microleakage was analyzed with the Spearman's test (alpha=0.05). Seating discrepancy and marginal gap values ranged from 81.82 µm to 137.22 µm (p=0.117), and from 75.42 µm to 78.49 µm (p=0.940), respectively. Marginal microleakage scores were ZP=3.02, RMGI=0.35 and RC=0.12 (p<0.001), with no differences between RMGI and RC scores. The correlation coefficient values ranged from -0.27 to 0.30 (p>0.05). Conclusion: Margin fit parameters and microleakage showed no strong correlations; cast crowns cemented with RMGI and RC had lower microleakage scores than ZP cement.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.
Resumo:
INTRODUCTION: The antibacterial effect of ozone (O3) has been described in the extant literature, but the role of O3 therapy in the treatment of certain types of infection remains controversial. OBJECTIVES: To evaluate the effect of intraperitoneal (i.p.) O3 application in a cecal ligation/puncture rat model on interleukins (IL-6, IL-10) and cytokine-induced neutrophil chemoattractant (CINC)-1 serum levels, acute lung injury and survival rates. METHODS: Four animal groups were used for the study: a) the SHAM group underwent laparotomy; b) the cecal ligation/puncture group underwent cecal ligation/puncture procedures; and c) the CLP+O2 and CLP+O3 groups underwent CLP+ corresponding gas mixture infusions (i.p.) throughout the observation period. IL-6, CINC-1 and IL-10 concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Acute lung injury was evaluated with the Evans blue dye lung leakage method and by lung histology. P<0.05 was considered significant. RESULTS: CINC-1 was at the lowest level in the SHAM group and was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group. IL-10 was lower for the SHAM group vs. the other three groups, which were similar compared to each other. IL-6 was lower for the SHAM group vs. all other groups, was lower for the CLP+O3 or CLP+O2 group vs. the cecal ligation/puncture group, and was similar for the CLP+O3 group vs. the CLP+O2 group. The lung histology score was lower for the SHAM group vs. the other groups. The Evans blue dye result was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group but similar to that of the SHAM group. The survival rate for the CLP+O3 group was lower than for the SHAM group and similar to that for the other 2 groups (CLP and CLP+O2). CONCLUSION: Ozone therapy modulated the inflammatory response and acute lung injury in the cecal ligation/puncture infection model in rats, although there was no improvement on survival rates.
Resumo:
We report the synthesis of single-phase, crystalline CdSiO3 nanostructures at 580ºC; to the best of our knowledge, this is the lowest temperature at which this material is reported to form. The desired phase does not form below 580ºC, since the diffraction peaks are shifted to lower angles in the material treated at 570ºC when compared to JDPDS Card No. 85-0310. The source of silicon has strong influence on the product morphology: Na2SiO3 yields single-phase CdSiO3 in needle-shaped nanostructures, while high surface area mesostructured SiO2 yields coralloid-shaped particles. Low angle X-ray diffractometry reveals that the mesostructured nature of the silica precursor is not maintained in the resulting CdSiO3. Scanning electron microscopy suggests that in this case a transition occurs between the spherical morphology of the precursor and the needle-shape morphology of the material prepared from Na2SiO3. The surface area of the silica precursor has a strong influence in the reaction, since the use of commercial silica with a lower surface area does not yield the desired product.
Resumo:
Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]
Resumo:
Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.
Resumo:
A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.
Resumo:
Leakage reduction in water supply systems and distribution networks has been an increasingly important issue in the water industry since leaks and ruptures result in major physical and economic losses. Hydraulic transient solvers can be used in the system operational diagnosis, namely for leak detection purposes, due to their capability to describe the dynamic behaviour of the systems and to provide substantial amounts of data. In this research work, the association of hydraulic transient analysis with an optimisation model, through inverse transient analysis (ITA), has been used for leak detection and its location in an experimental facility containing PVC pipes. Observed transient pressure data have been used for testing ITA. A key factor for the success of the leak detection technique used is the accurate calibration of the transient solver, namely adequate boundary conditions and the description of energy dissipation effects since PVC pipes are characterised by a viscoelastic mechanical response. Results have shown that leaks were located with an accuracy between 4-15% of the total length of the pipeline, depending on the discretisation of the system model.
Resumo:
The present work presents the measurements of the magnetic Barkhausen noise (MBN) in ASTM 36 steel samples around a pit under plastic deformation. The contour maps obtained from these Barkhausen noise measurements are compared with the finite element analysis of the ideal plastic deformation. Also, a parameter of the Barkhausen signal to detect the plastic deformation around the pit in ASTM 36 steel is obtained. Additionally to that, we propose another MBN parameter to estimate the pit width using the Barkhausen noise. (c) 2007 Elsevier Ltd. All rights reserved.