929 resultados para 291400 Materials Engineering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Basic aluminium sulphate and nitrate crystals were prepared by forced hydrolysis of aluminium salt solution followed by precipitation with a sulphate solution or by evaporation for the basic aluminium nitrate. X-ray Photoelectron Spectroscopy (XPS) confirms the chemical composition determined by ICP-AES in earlier work. High resolution XPS scans of the individual elements allow the identification of both the central (AlO4)-Al-IV group and the 12 aluminium octahedra in the [IVAlO4AlVI(OH)(24)(H2O)(12)] building unit by two Al 2p transitions with binding energies of 73.7 and 74.2 eV in both the basic aluminium sulphate and nitrate. Four different types of oxygen atoms were identified in the basic aluminium sulphate associated with the central AlO4, OH, H2O and SO4 groups in the crystal structure with transitions at 529.4, 530.1, 530.7 and 531.8 eV, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We prove that a pure entangled state of two subsystems with equal spin is equivalent to a two-mode spin-squeezed state under local operations except for a set of bipartite states with measure zero, and provide a counterexample to the generalization of this result to two subsystems of unequal spin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation was carried out on the transition of an iron electrode from active to passive state in a sulphuric acid solution. It was found that the active-passive transition was an auto-catalytic process in which a pre-passive film grew on the electrode surface. The growing pre-passive film had a fractal edge whose dimension was affected by the applied passivating potential and the presence of chlorides in the solution. Applying a more positive passivating potential led to a faster active-passive transition and resulted in a more irregular pre-passive film. If chlorides were introduced into the sulphuric acid solution, the active-passive transition became more rapid and the pre-passive film more irregular. Apart from the influence on the growth of the pre-passive film, the presence of chlorides in the passivating solution was found to deteriorate the stability of the final passive film. All these phenomena can be understood if the passivating iron electrode is regarded as a dissipative system. To explain these results, a fractal pre-film model is proposed in this paper. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking. an oraganic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants. Toyota long, life coolant appeared to be the most promising one. In addition. it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder. brass. steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports on a critical measurement to understand the intergranular stress corrosion cracking (IGSCC) of pipeline steels: the atom probe field ion microscope (APFIM) measurement of the carbon concentration at a grain boundary (GB). The APFIM measurement was related to the microstructure and to IGSCC observations. The APFIM indicated that the GB carbon concentration of X70 was similar to 10 at% or less, which correlated with a high resistance to IGSCC for X70. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc oxide single crystals implanted at room temperature with high-dose (1.4x10(17) cm(-2)) 300 keV As+ ions are annealed at 1000-1200 degrees C. Damage recovery is studied by a combination of Rutherford backscattering/channeling spectrometry (RBS/C), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy. Results show that such a thermal treatment leads to the decomposition and evaporation of the heavily damaged layer instead of apparent defect recovery and recrystallization that could be inferred from RBS/C and XTEM data alone. This study shows that heavily damaged ZnO has relatively poor thermal stability compared to as-grown ZnO which is a significant result and has implications for understanding results on thermal annealing of ion-implanted ZnO. (c) 2005 Americian Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the past 12 months, developments in both porous and non-porous materials for the molten carbonate fuel cell (MCFC) should lead to significantly increased stack lifetimes. Lithium-sodium carbonate is emerging as the material of choice for the electrolyte and has been tested in a 10 kW scale stack. Several new cathode materials, with lower dissolution rates in the electrolyte than state-of-the-art NiO, have been tested. However a significant finding is that the dissolution rate of NiO can also be reduced by an order of magnitude by preparing it as a functional nanomaterial. Although most developers continue to use nickel anodes, recent tests with ceramic oxides anodes open up the prospects of reduced carbon deposition and future cells running directly on dry methane. (c) 2004 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A volume-averaged two-phase model addressing the main transport phenomena associated with hot tearing in an isotropic mushy zone during solidification of metallic alloys has recently been presented elsewhere along with a new hot tearing criterion addressing both inadequate melt feeding and excessive deformation at relatively high solid fractions. The viscoplastic deformation in the mushy zone is addressed by a model in which the coherent mush is considered as a porous medium saturated with liquid. The thermal straining of the mush is accounted for by a recently developed model taking into account that there is no thermal strain in the mushy zone at low solid fractions because the dendrites then are free to move in the liquid, and that the thermal strain in the mushy zone tends toward the thermal strain in the fully solidified material when the solid fraction tends toward one. In the present work, the authors determined how variations in the parameters of the constitutive equation for thermal strain influence the hot tearing susceptibility calculated by the criterion. It turns out that varying the parameters in this equation has a significant effect on both liquid pressure drop and viscoplastic strain, which are key parameters in the hot tearing criterion. However, changing the parameters in this constitutive equation will result in changes in the viscoplastic strain and the liquid pressure drop that have opposite effects on the hot tearing susceptibility. The net effect on the hot tearing susceptibility is thus small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To identify the effect of reactive preparation on the structure and properties of rigid polyurethane (PU)layered silicate nanocomposite, a range of nanocomposites were prepared by combining the various precursors in different sequences. The morphology of the samples was characterized by XRD and TEM. Tensile properties and dynamic mechanical thermal properties were measured. The reactions between the layered silicates and PU precursors were monitored via FTIR to gain an understanding of the participation of nanofiller in the polymerization reaction, and the impact of this on system stoichiometry. The XRD and TEM results provided evidence that morphology can differ significantly if different synthesis methods are used. However, the mechanical properties are dominated by the stoichiometry imbalance induced by the addition of the layered silicates. (c) 2006 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultem 1000 polyetherimide films prepared by cast-evaporating technique were covered with a 1H,1H,2H-tridecafluoro-oct-1-ene (PFO) plasma-polymerized layer. The effects of the plasma exposure time on the surface composition were studied by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and surface energy analysis. The surface topography of the plasma layer was deduced from scanning electron microscopy. The F/C ratio for plasma-polymerized PFO under the input RF power of 50 W can be as high as 1.30 for 480 s and similar to 0.4-2 at % of oxygen was detected, resulting from the reaction of long-lived radicals in the plasma polymer with atmospheric oxygen. The plasma deposition of fluorocarbon coating from plasma PFO reduces the surface energy from 46 to 18.3 mJ m(-2). (c) 2006 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.