995 resultados para 290102 Food Engineering
Resumo:
Background: Stereotypically perceived to be an ‘all male’ occupation, engineering has for many years failed to attract high numbers of young women [1,2]. The reasons for this are varied, but tend to focus on misconceptions of the profession as being more suitable for men. In seeking to investigate this issue a participatory research approach was adopted [3] in which two 17 year-old female high school students interviewed twenty high school girls. Questions focused on the girls’ perceptions of engineering as a study and career choice. The findings were recorded and analysed using qualitative techniques. The study identified three distinctive ‘influences’ as being pivotal to girls’ perceptions of engineering; pedagogical; social; and, familial. Pedagogical Influences: Pedagogical influences tended to focus on science and maths. In discussing science, the majority of the girls identified biology and chemistry as more ‘realistic’ whilst physics was perceived to more suitable for boys. The personality of the teacher, and how a particular subject is taught, proved to be important influences shaping opinions. Social Influences: Societal influences were reflected in the girls’ career choice with the majority considering medical or social science related careers. Although all of the girls believed engineering to be ‘male dominated’, none believed that a woman should not be engineer. Familial Influences: Parental influence was identified as key to career and study choice; only two of the girls had discussed engineering with their parents of which only one was being actively encouraged to pursue a career in engineering. Discussion: The study found that one of the most significant barriers to engineering is a lack of awareness. Engineering did not register in the girls’ lives, it was not taught in school, and only one had met a female engineer. Building on the study findings, the discussion considers how engineering could be made more attractive to young women. Whilst misconceptions about what an engineer is need to be addressed, other more fundamental pedagogical barriers, such as the need to make physics more attractive to girls and the need to develop the curriculum so as to meet the learning needs of 21st Century students are discussed. By drawing attention to the issues around gender and the barriers to engineering, this paper contributes to current debates in this area – in doing so it provides food for thought about policy and practice in engineering and engineering education.
Resumo:
Menu engineering is a methodology to classify menu items by their contribution margin and popularity. The process discounts the importance of food cost percentage, recognizing that operators deposit cash, not percentages. The authors raise the issue that strict application of the principles of menu engineering may result in an erroneous evaluation of a menu item, and also may be of little use without considering the variable portion of labor. They describe an enhancement to the process by considering labor.
Resumo:
Postprint
Resumo:
Nanotechnology is a multidisciplinary science that is having a boom today, providing new products with attractive physicochemical properties for many applications. In agri/feed/food sector, nanotechnology offers great opportunities for obtaining products and innovative applications for agriculture and livestock, water treatment and the production, processing, storage and packaging of food. To this end, a wide variety of nanomaterials, ranging from metals and inorganic metal oxides to organic nanomaterials carrying bioactive ingredients are applied. This review shows an overview of current and future applications of nanotechnology in the food industry. Food additives and materials in contact with food are now the main applications, while it is expected that in the future are in the field of nano-encapsulated and nanocomposites in applications as novel foods, additives, biocides, pesticides and materials food contact.
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.
Resumo:
Antioxidant enzymes (catalase and peroxidase) and carotenoids (lutein and â-carotene) are often used as biomarkers of metal contamination of water and agricultural soils. In this study, the effects of heavy metals present in irrigation water on the aforementioned carotenoids of potatoes (Solanum tuberosum L.) and carrots (Daucus carota L.), cultivated in a greenhouse and irrigated with a water solution including different levels of Cr(VI) and Ni(II) were investigated. These results were compared to the levels of the same metabolites that had been assessed in market-available potato and carrot samples. The findings indicated that the levels of the examined metabolites on the treated with Cr and Ni samples, resemble the levels of the same parameters in the market samples, originating from polluted areas. Therefore, the antioxidant enzymes, catalase and peroxidase, and the carotenoids, lutein and â-carotene, could be handled as indicators of heavy metal pollution.
Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
Resumo:
The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.
Resumo:
This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg/m2; maximum oxygen uptake, 43.1 ± 7.4 mL/kg/min) completed the 12-week supervised exercise programme. Body composition, health markers (e.g. blood pressure), eating behaviour, food cravings and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p=0.326, d=-0.12) and expenditure (p=0.799, d=0.04), or uncontrolled eating and emotional eating scores (p>0.05). However, there was a trend with a medium effect size (p=0.058, d=0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p=0.009, d=-1.19) and specific cravings of high-fat foods (p=0.023, d=-0.90), fast-food fats (p=0.009, d=-0.71) and carbohydrates/starches (p=0.009, d=-0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p=0.052, d=-0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, however, these were not accompanied by changes in other eating behaviours and weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.
Resumo:
This research investigated the effect of modifying the aftertaste of potato crisps on (1) temporal sensory perception and (2) appetite using three mouthwash conditions (no mouthwash, a water mouthwash, and a menthol mouthwash). For the sensory study, 17 screened female subjects were trained on the Temporal Dominance of Sensations (TDS) methodology. Subjects undertook TDS to monitor all sensory attributes during the mastication of a 2 g crisp until swallowing (at 20s), then conducted the mouthwash, and then continued the TDS task to monitor aftertaste until 90s. For the appetite study, 36 subjects (18 male, 18 female) completed 100 mm Visual Analogue Scales (VAS) for desire, liking, hunger, and thirst, followed by an ad libitum eating task. For the VAS scales testing, subjects chewed and swallowed a 2 g crisp, and then immediately conducted the mouthwash before completing the VAS scales. For the ad libitum task, subjects were given 12 min to consume as many crisps as they desired on a plate (up to 50 g). Every three minutes they were required to conduct a mouthwash. TDS results showed that in comparison with no mouthwash, the water mouthwash significantly reduced aftertaste attributes such as savoury, salty, and fatty mouthcoating, and the menthol mouthwash significantly increased aftertaste attributes of cooling, minty, and tingly. The water mouthwash did not influence desire and liking of crisps, or hunger and thirst. The water mouthwash did not influence ad libitum intake of the crisps over a 12 min period. The menthol mouthwash significantly reduced desire and liking of the crisps, as well as hunger and thirst. Furthermore, the menthol mouthwash significantly reduced ad libitum crisp intake by 29% over the 12 min period.
Resumo:
At the intersection of biology, chemistry, and engineering, biosensors are a multidisciplinary innovation that provide a cost-effective alternative to traditional laboratory techniques. Due to their advantages, biosensors are used in medical diagnostics, environmental monitoring, food safety and many other fields. The first part of the thesis is concerned with learning the state of the art of paper-based immunosensors with bioluminescent (BL) and chemiluminescent (CL) detection. The use of biospecific assays combined with CL detection and paper-based technology offers an optimal approach to creating analytical tools for on-site applications and we have focused on the specific areas that need to be considered more in order to ensure a future practical implementation of these methods in routine analyses. The subsequent part of the thesis addresses the development of an autonomous lab-on-chip platform for performing chemiluminescent-based bioassays in space environment, exploiting a CubeSat platform for astrobiological investigations. An origami-inspired microfluidic paper-based analytical device has been developed with the purpose of assesses its performance in space and to evaluate its functionality and the resilience of the (bio)molecules when exposed to a radiation-rich environment. Subsequently, we designed a paper-based assay to detect traces of ovalbumin in food samples, creating a user-friendly immunosensing platform. To this purpose, we developed an origami device that exploits a competitive immunoassay coupled with chemiluminescence detection and magnetic microbeads used to immobilize ovalbumin on paper. Finally, with the aim of exploring the use of biomimetic materials, an hydrogel-based chemiluminescence biosensor for the detection of H2O2 and glucose was developed. A guanosine hydrogel was prepared and loaded with luminol and hemin, miming a DNAzyme activity. Subsequently, the hydrogel was modified by incorporating glucose oxidase enzyme to enable glucose biosensing. The emitted photons were detected using a portable device equipped with a smartphone's CMOS (complementary metal oxide semiconductor) camera for CL emission detection.
Resumo:
This article analyzes food insecurity and hunger in Brazilian families with children under five years of age. This was a nationally representative cross-sectional study using data from the National Demographic and Health Survey on Women and Children (PNDS-2006), in which the outcome variable was moderate to severe food insecurity, measured by the Brazilian Food Insecurity Scale (EBIA). Prevalence estimates and prevalence ratios were generated with 95% confidence intervals. The results showed a high prevalence of moderate to severe food insecurity, concentrated in the North and Northeast regions (30.7%), in economic classes D and E (34%), and in beneficiaries of conditional cash transfer programs (36.5%). Multivariate analysis showed that the socioeconomic relative risks (beneficiaries of conditional cash transfers), regional relative risks (North and Northeast regions), and economic relative risks (classes D and E) were 1.8, 2.0 and 2.4, respectively. Aggregation of the three risks showed 48% of families with moderate to severe food insecurity, meaning that adults and children were going hungry during the three months preceding the survey.
Resumo:
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.