843 resultados para 040407 Seismology and Seismic Exploration
Resumo:
Extrair informações litológicas da subsuperfície através de dados sísmicos constitui-se num grande desafio à prospecção sísmica, pois a hipótese de estratificações formadas por camadas isotrópicas se mostra insuficiente para representar o comportamento do campo elástico em levantamentos com grandes afastamentos entre fonte e receptor, geofones multicomponentes, medidas de VSP tridimensional, entre outros. Sob este panorama, a prospecção sísmica passa a considerar modelos anisotrópicos de subsuperfície para, por exemplo, caracterizar reservatórios. O objetivo deste texto é apresentar um formalismo para modelar o espalhamento de pulsos a partir de ondas planas incidentes em interfaces planas horizontais que separam meios anisotrópicos. Este espalhamento é obtido primeiramente, através da formulação explícita dos campos de deformação e tração como função das matrizes propagadoras, de polarização e de impedância do meio. Em seguidaeste formalismo é usado para a obtenção das matrizes dos coeficientes de reflexão e transmissão através de uma interface plana horizontal para posteriormente, ser generalizado para o espalhamento através de múltiplas camadas. Finalmente, inserem-se ao campo da onda incidente as amplitudes de um pulso analítico para calcular o espalhamento do pulso através de estratificações.
Resumo:
The Namorado Oil Field represents the beginning of the oil exploration in Brazil, in the 70s, and it is still a subject of researches because the importance of this turbidite sandstone in the brazilian oil production. The Namorado’s production level was denominated “Namorado sandstone”, it is composed by turbidite sandstone deposited during the Albian-Cenomanian. In order to define the structural geometry of the main reservoir, geological and geophysical tools like RECON and Geographix (Prizm – Seisvision) softwares were used, and its application was focused on geological facies analysis, for that propose well logs, seismic interpretation and petrophysical calculations were applied. Along this work 15 vertical wells were used and the facies reservoirs were mapped of along the oil field; it is important to mentioned that the all the facies were calibrated by the correlation rock vs log profile, and 12 reservoir-levels (NA-1, NA-2, NA-3, NA-4, NA-5, NA-6, NA-7, NA-8, NA-9, NA-10, NA-11 e NA-12) were recognized and interpreted. Stratigraphic sections (NE-SW and NW-SE) were also built based on stratigraphic well correlation of each interpreted level, and seismic interpretation (pseudo-3D seismic data) on the southeastern portion of the oil field. As results it was interpreted on two- and three-dimensional maps that the deposition reservoir’s levels are hight controlled by normal faults systems. This research also shows attribute maps interpretation and its relationship with the selection of the reservoir attribute represented on it. Finally the data integration of stratigraphic, geophysical and petrophysical calculations lets us the possibility of obtain a detail geological/petrophysical 3D model of the main reservoir levels of “Namorado sandstone” inside the oil/gás field
Resumo:
In the region of Badejo oil Ffeld (Campos Basin) lies an Lower Albian dolomitic layer that shows reservoir rock and seal conditions, among others and, it is occasionally karstified. This work applies geostatistical techniques of ordinary and indicatior kriging, in an attempt to determine a method that assists the analysis of different scenarios offered for petroleum drilling from a quantitative point of view this fact is justified, because there are different visions and strategies that would be adopted under different dolomite conditions (stable - low porosity and high density; reservoir - high porosity and medium density; instable - high porosity and low dentisty). The main objective is a methodological introduction that has not been tested in dolomites before aiming to characterize the distribution of the three conditions described above by ordinary and indicatior kriging, which was based on the obtained data from the dolomite layer identification through well logs interpretation and correlation, followed by seismic interpretation. In addition, it was generated structural contour maps, based on 2D and 3D seismic data interpretation, and then, seismic attributes maps were calculated, in order to transform them into pseudo-density maps, i.e., maps that correlate the density values with the attribute values. As primary results, structural contour maps and seismic attributes were obtained and ordinary and indicatior kriging maps were done, on which it is possible to interpret the distribution of the main reservoir and risk probability for drilling of exploration wells obtaining trends N35E and N10W direction for areas of stability or reservoir levels, while the central part of the map presents a higher risk for loss of drilling fluid. The cut-off values levels were based on the values of first and third quartiles of cumulative histogram (instable and stable zones, respectively), as well as the reservoir level was set as the interval...
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Resumo:
In this research work I analyzed the instrumental seismicity of Southern Italy in the area including the Lucanian Apennines and Bradano foredeep, making use of the most recent seismological database available so far. I examined the seismicity occurred during the period between 2001 and 2006, considering 514 events with magnitudes M ≥ 2.0. In the first part of the work, P- and S-wave arrival times, recorded by the Italian National Seismic Network (RSNC) operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were re-picked along with those of the SAPTEX temporary array (2001–2004). For some events located in the Upper Val d'Agri, I also used data from the Eni-Agip oil company seismic network. I computed the VP/VS ratio obtaining a value of 1.83 and I carried out an analysis for the one-dimensional (1D) velocity model that approximates the seismic structure of the study area. After this preliminary analysis, making use of the records obtained in the SeSCAL experiment, I incremented the database by handpicking new arrival times. My final dataset consists of 15,666 P- and 9228 S-arrival times associated to 1047 earthquakes with magnitude ML ≥ 1.5. I computed 162 fault-plane solutions and composite focal mechanisms for closely located events. I investigated stress field orientation inverting focal mechanism belonging to the Lucanian Apennine and the Pollino Range, both areas characterized by more concentrated background seismicity. Moreover, I applied the double difference technique (DD) to improve the earthquake locations. Considering these results and different datasets available in the literature, I carried out a detailed analysis of single sub-areas and of a swarm (November 2008) recorded by SeSCAL array. The relocated seismicity appears more concentrated within the upper crust and it is mostly clustered along the Lucanian Apennine chain. In particular, two well-defined clusters were located in the Potentino and in the Abriola-Pietrapertosa sector (central Lucanian region). Their hypocentral depths are slightly deeper than those observed beneath the chain. I suggest that these two seismic features are representative of the transition from the inner portion of the chain with NE-SW extension to the external margin characterized by dextral strike-slip kinematics. In the easternmost part of the study area, below the Bradano foredeep and the Apulia foreland, the seismicity is generally deeper and more scattered and is associated to the Murge uplift and to the small structures present in the area. I also observed a small structure NE-SW oriented in the Abriola-Pietrapertosa area (activated with a swarm in November 2008) that could be considered to act as a barrier to the propagation of a potential rupture of an active NW-SE striking faults system. Focal mechanisms computed in this study are in large part normal and strike-slip solutions and their tensional axes (T-axes) have a generalized NE-SW orientation. Thanks to denser coverage of seismic stations and the detailed analysis, this study is a further contribution to the comprehension of the seismogenesis and state of stress of the Southern Apennines region, giving important contributions to seismotectonic zoning and seismic hazard assessment.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Resumo:
Magmatic volatiles play a crucial role in volcanism, from magma production at depth to generation of seismic phenomena to control of eruption style. Accordingly, many models of volcano dynamics rely heavily on behavior of such volatiles. Yet measurements of emission rates of volcanic gases have historically been limited, which has restricted model verification to processes on the order of days or longer. UV cameras are a recent advancement in the field of remote sensing of volcanic SO2 emissions. They offer enhanced temporal and spatial resolution over previous measurement techniques, but need development before they can be widely adopted and achieve the promise of integration with other geophysical datasets. Large datasets require a means by which to quickly and efficiently use imagery to calculate emission rates. We present a suite of programs designed to semi-automatically determine emission rates of SO2 from series of UV images. Extraction of high temporal resolution SO2 emission rates via this software facilitates comparison of gas data to geophysical data for the purposes of evaluating models of volcanic activity and has already proven useful at several volcanoes. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system’s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera, help constrain this model. UV camera measurements at Kilauea volcano, Hawaii, in May of 2010 captured two occurrences of lava filling and draining within the summit vent. Accompanying high lava stands were diminished SO2 emission rates, decreased seismic and infrasonic tremor, minor deflation, and slowed lava lake surface velocity. Incorporation of UV camera data into the multi-parameter dataset gives credence to the likelihood of shallow gas accumulation as the cause of such events.
Resumo:
The exsolution of volatiles from magma maintains an important control on volcanic eruption styles. The nucleation, growth, and connectivity of bubbles during magma ascent provide the driving force behind eruptions, and the rate, volume, and ease of gas exsolution can affect eruptive activity. Volcanic plumes are the observable consequence of this magmatic degassing, and remote sensing techniques allow us to quantify changes in gas exsolution. However, until recently the methods used to measure volcanic plumes did not have the capability of detecting rapid changes in degassing on the scale of standard geophysical observations. The advent of the UV camera now makes high sample rate gas measurements possible. This type of dataset can then be compared to other volcanic observations to provide an in depth picture of degassing mechanisms in the shallow conduit. The goals of this research are to develop a robust methodology for UV camera field measurements of volcanic plumes, and utilize this data in conjunction with seismoacoustic records to illuminate degassing processes. Field and laboratory experiments were conducted to determine the effects of imaging conditions, vignetting, exposure time, calibration technique, and filter usage on the UV camera sulfur dioxide measurements. Using the best practices determined from these studies, a field campaign was undertaken at Volcán de Pacaya, Guatemala. Coincident plume sulfur dioxide measurements, acoustic recordings, and seismic observations were collected and analyzed jointly. The results provide insight into the small explosive features, variations in degassing rate, and plumbing system of this complex volcanic system. This research provides useful information for determining volcanic hazard at Pacaya, and demonstrates the potential of the UV camera in multiparameter studies.
Resumo:
This article seeks to contribute to the illumination of the so-called 'paradox of voting' using the German Bundestag elections of 1998 as an empirical case. Downs' model of voter participation will be extended to include elements of the theory of subjective expected utility (SEU). This will allow a theoretical and empirical exploration of the crucial mechanisms of individual voters' decisions to participate, or abstain from voting, in the German general election of 1998. It will be argued that the infinitely low probability of an individual citizen's vote to decide the election outcome will not necessarily reduce the probability of electoral participation. The empirical analysis is largely based on data from the ALLBUS 1998. It confirms the predictions derived from SEU theory. The voters' expected benefits and their subjective expectation to be able to influence government policy by voting are the crucial mechanisms to explain participation. By contrast, the explanatory contribution of perceived information and opportunity costs is low.
Resumo:
Quantification of the volumes of sediment removed by rock–slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. This study captures a multi-decadal period of hillslope erosion and channel change following an extreme rock avalanche in 1961 in the Illgraben, a catchment prone to debris flows in the Swiss Alps. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with climatic and seismic variables for a 43 year period from 1963 to 2005. Based on these analyses we identify and discuss (1) patterns of hillslope production, channel transfer and catchment sediment yield, (2) their dominant interactions with climatic and seismic variables, and (3) the nature of hillslope–channel coupling and implications for sediment yield and landscape evolution in this mountain basin. Our results show an increase in the mean hillslope erosion rate in the 1980s from 0.24 ± 0.01 m yr− 1 to 0.42 ± 0.03 m yr− 1 that coincided with a significant increase in air temperature and decrease in snow cover depth and duration, which we presume led to an increase in the exposure of the slopes to thermal weathering processes. The combination of highly fractured slopes close to the threshold angle for failure, and multiple potential triggering mechanisms, means that it is difficult to identify an individual control on slope failure. On the other hand, the rate of channel change was strongly related to variables influencing runoff. A period of particularly high channel erosion rate of 0.74 ± 0.02 m yr− 1 (1992–1998) coincided with an increase in the frequency and magnitude of intense rainfall events. Hillslope erosion exceeded channel erosion on average, indicative of a downslope-directed coupling relationship between hillslope and channel, and demonstrating the first order control of rock–slope failure on catchment sediment yield and landscape evolution.
Resumo:
The history of Lake Kivu is strongly linked to the activity of the Virunga volcanoes. Subaerial and subaquatic volcanoes, in addition to lake-level changes, shape the subaquatic morphologic and structural features in Lake Kivu's Main Basin. Previous studies revealed that volcanic eruptions blocked the former outlet of the lake to the north in the late Pleistocene, leading to a substantial rise in the lake level and subsequently the present- day thermohaline stratification. Additional studies have speculated that volcanic and seismic activities threaten to trigger a catastrophic release of the large amount of gases dissolved in the lake. The current study presents a bathymetric mapping and seismic profiling survey that covers the volcanically active area of the Main Basin at a resolution that is unprecedented for Lake Kivu. New geomorphologic features identified on the lake floor can accurately describe related lake-floor processes for the first time. The late Pleistocene lowstand is observed at 425 m depth, and volcanic cones, tuff rings, and lava flows observed above this level indicate both subaerial and subaquatic volcanic activities during the Holocene. The geomorphologic analysis yields new implications on the geologic processes that have shaped Lake Kivu's basin, and the presence of young volcanic features can be linked to the possibility of a lake overturn.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
«Cultural mapping» has become a central keyword in the UNESCO strategy to protect world cultural and natural heritage. It can be described as a tool to increase the awareness of cultural diversity. As Crawhall (2009) pointed out, cultural mapping was initially considered to represent the «landscapes in two or three dimensions from the perspectives of indigenous and local peoples». It thus transforms the intangible cultural heritage to visible items by establishing profiles of cultures and communities, including music traditions. Cultural mapping is used as a resource for a variety of purposes as broad as peace building, adaptation to climate change, sustainability management, heritage debate and management, but can also become highly useful in the analysis of conflict points. Music plays a significant role in each of these aspects. This year’s symposium invites to highlight, yet also to critically reassess this topic from the following ethnomusicological perspectives: - The method of cultural mapping in ethnomusicology What approaches and research techniques have been used so far to establish musical maps in this context? What kinds of maps have been developed (and, for example, how far do these relate to indigenous mental maps that have only been transmitted orally)? How far do these modern approaches deviate from the earlier cultural mapping approaches of the cultural area approaches that were still evident with Alan P. Merriam and in Alan Lomax` Cantometrics? In how far are the methods of cultural mapping and of ethnomusicological fieldwork different and how can they benefit from each other? - Intangible cultural heritage and musical diversity As the 2003 UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage pointed out in Article 12, each state signing the declaration «shall draw up, in a manner geared to its own situation, one or more inventories of the intangible cultural heritage, present in its territory and monitor these.» This symposium calls for a critical re-assessment of the hitherto established UNESCO intangible cultural heritage lists. The idea is to highlight the sensitive nature and the effects of the various heritage representations. «Heritage» is understood here as a selection from a selection – a small subset of history that relates to a given group of people in a particular place, at a specific time (Dann and Seaton 2001:26). This can include presentations of case studies, yet also a critical re-analysis of the selection process, e.g. who was included – or even excluded (and why)? Who were the decision makers? How can the role of ethnomusicology be described here? Where are the (existent and possible) conflict points (politically, socially, legally, etc.)? What kinds of solution strategies are available to us? How is the issue of diversity – that has been so strongly emphasized in the UNESCO declarations – reflected in the approaches? How might diversity be represented in future approaches? How does the selection process affect musical canonization (and exclusion)? What is the role of archives in this process? - Cultural landscape and music As defined by the World Heritage Committee, cultural landscapes can be understood as a distinct geographical area representing the «combined work of nature and man» (http://whc.unesco.org/en/culturallandscape/). This sub-topic calls for a more detailed – and general – exploration of the exact relation between nature/landscape (and definition of such) and music/sound. How exactly is landscape interrelated with music – and identified (and vice versa)? How is this interrelation being applied and exploited in a (inter-)national context?
Resumo:
This longitudinal panel study investigated predictors and outcomes of active engagement in career preparation among 349 Swiss adolescents from the beginning to the end of eighth grade. Latent variable structural equation modeling was applied. The results showed that engagement in terms of self- and environmental-exploration and active career planning related positively to interindividual increases in career decidedness and choice congruence. More perceived social support, early goal decidedness, and particular personality traits predicted more engagement. Support and personality impacted outcomes only mediated through engagement. Early decidedness and congruence were significant predictors of their respective later levels. Implications for practice are presented.