864 resultados para vehicle scheduling
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
Resumo:
The development in power systems and the introduction of decentralized generation and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which considers not only the generation, but also the management of loads through demand response programs, energy storage units, EVs and other players in a liberalized electricity markets environment. This paper proposes a methodology to be used by Virtual Power Players (VPPs), concerning the energy resource scheduling in smart grids, considering day-ahead, hour-ahead and real-time scheduling. The case study considers a 33-bus distribution network with high penetration of distributed energy resources. The wind generation profile is based on a real Portuguese wind farm. Four scenarios are presented taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour-ahead and realtime scheduling.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
The operation of distribution networks has been facing changes with the implementation of smart grids and microgrids, and the increasing use of distributed generation. The specific case of distribution networks that accommodate residential buildings, small commerce, and distributed generation as the case of storage and PV generation lead to the concept of microgrids, in the cases that the network is able to operate in islanding mode. The microgrid operator in this context is able to manage the consumption and generation resources, also including demand response programs, obtaining profits from selling electricity to the main network. The present paper proposes a methodology for the energy resource scheduling considering power flow issues and the energy buying and selling from/to the main network in each bus of the microgrid. The case study uses a real distribution network with 25 bus, residential and commercial consumers, PV generation, and storage.
Resumo:
A função de escalonamento desempenha um papel importante nos sistemas de produção. Os sistemas de escalonamento têm como objetivo gerar um plano de escalonamento que permite gerir de uma forma eficiente um conjunto de tarefas que necessitam de ser executadas no mesmo período de tempo pelos mesmos recursos. Contudo, adaptação dinâmica e otimização é uma necessidade crítica em sistemas de escalonamento, uma vez que as organizações de produção têm uma natureza dinâmica. Nestas organizações ocorrem distúrbios nas condições requisitos de trabalho regularmente e de forma inesperada. Alguns exemplos destes distúrbios são: surgimento de uma nova tarefa, cancelamento de uma tarefa, alteração na data de entrega, entre outros. Estes eventos dinâmicos devem ser tidos em conta, uma vez que podem influenciar o plano criado, tornando-o ineficiente. Portanto, ambientes de produção necessitam de resposta imediata para estes eventos, usando um método de reescalonamento em tempo real, para minimizar o efeito destes eventos dinâmicos no sistema de produção. Deste modo, os sistemas de escalonamento devem de uma forma automática e inteligente, ser capazes de adaptar o plano de escalonamento que a organização está a seguir aos eventos inesperados em tempo real. Esta dissertação aborda o problema de incorporar novas tarefas num plano de escalonamento já existente. Deste modo, é proposta uma abordagem de otimização – Hiper-heurística baseada em Seleção Construtiva para Escalonamento Dinâmico- para lidar com eventos dinâmicos que podem ocorrer num ambiente de produção, a fim de manter o plano de escalonamento, o mais robusto possível. Esta abordagem é inspirada em computação evolutiva e hiper-heurísticas. Do estudo computacional realizado foi possível concluir que o uso da hiper-heurística de seleção construtiva pode ser vantajoso na resolução de problemas de otimização de adaptação dinâmica.
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
This article introduces schedulability analysis for global fixed priority scheduling with deferred preemption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). We show how schedulability can be improved using gFPDS via appropriate choice of priority assignment and final non-pre-emptive region lengths, and provide algorithms which optimize schedulability in this way. Via an experimental evaluation we compare the performance of multiprocessor scheduling using global approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches employing FPDS, FPPS, and FPNS on each processor.
Resumo:
The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.
Resumo:
In this work the mission control and supervision system developed for the ROAZ Autonomous Surface Vehicle is presented. Complexity in mission requirements coupled with flexibility lead to the design of a modular hierarchical mission control system based on hybrid systems control. Monitoring and supervision control for a vehicle such as ROAZ mission is not an easy task using tools with low complexity and yet powerful enough. A set of tools were developed to perform both on board mission control and remote planning and supervision. “ROAZ- Mission Control” was developed to be used in support to bathymetric and security missions performed in river and at seas.
Resumo:
International Lifesaving Congress 2007, La Coruna, Spain, December, 2007
Resumo:
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.
Resumo:
The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.