799 resultados para upregulation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toll-like receptor 3 (TLR3) plays a key role in activating immune responses during viral infection. To study the genes involved in the regulatory function of TLR3 in the rare minnow Gobiocypris rarus after viral infection, a full-length cDNA of TLR3 (GrTLR3) with a splice variant (GrTLR3s) was identified by homologous cloning and RACE techniques. The antiviral effector molecule Mx gene was cloned and partially sequenced. The mRNA expression levels of GrTLR3, GrTLR3s, and Mx were studied in different tissues before and after virus infection by real-time quantitative RT-PCR. The transcripts of all three genes in liver were significantly increased following GCRV infection (P<0.05). The mRNA levels in liver were upregulated at 24 h post-injection for GrTLR3 and GrTLR3s, and at 12 h for Mx. The upregulated expression levels were several folds for GrTLR3s, tens of folds for GrTLR3, and hundreds of folds for Mx. By semi-quantitative RT-PCR, GrTLR3 and Mx expressed at all the developmental stages, whereas GrTLR3s could only be detected at later developmental stages. Using RNAi and transgenic techniques, GrTLR3 mediated Mx expression but GrTLR3s did not. The time-dependent upregulation of receptor and effector, and the Mx over-expression dependent on TLR3, indicated that GrTLR3 regulated Mx expression in viral infection through a configuration change in rare minnow, and its splice variant did not contribute to the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidences suggested that oxidative stress may play a significant role in the pathogenesis of MCs toxicity. In the present study, the acute effects of microcystins on the transcription of antioxidant enzyme genes were investigated in liver of crucian carp i.p.-injected with 50 mu g MC-LReq per kg body weight (BW). We reported the cDNA sequences for four kinds of antioxidant enzyme (GSH-PX, CAT, Cu/Zn SOD, and GR) genes, and evaluated the oxidant stress induced by MCs through analyzing the transcription abundance of antioxidant enzyme genes using real-time PCR method. The time-dependent change of relative transcription abundance and expression of the antioxiclant enzyme genes were determined at 1, 3, 12, 24, and 48 h. The transcription abundance varied among antioxiclant enzymes, with GSH-PX and GR down-regulation, and CAT and SOD significantly upregulation. Based on these data, we tentatively concluded that the oxidant stress was induced by MCs, and caused the different response of the antioxiclant enzyme genes. (c) 2008 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus infection of mammalian cells activates an innate antiviral immune response characterized by production of interferon (IFN) and the subsequent transcriptional upregulation of IFN-stimulated genes (ISGs) by the JAK-STAT signaling pathway. Here, we report that a fish cell line, crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells, can produce IFN activity and then form an antiviral state after infection with UV-inactivated grass carp hemorrhagic virus (GCHV), a double-stranded (ds) RNA virus. From UV-inactivated GCHV-infected CAB cells, 15 pivotal genes were cloned and sequenced, and all of them were shown to be involved in IFN antiviral innate immune response. These IFN system genes include the dsRNA signal sensing factor TLR3, IFN, IFN signal transduction factor STAT1, IFN regulatory factor IRF7, putative IFN antiviral effectors Mx1, Mx2, PKR-like, Viperin, IFI56, and other IFN stimulated genes (ISGs) IFI58, ISG15-1, ISG15-2, USP18, Gig1 and Gig2. The identified fish IFN system genes were highly induced by active GCHV, UV-inactivated GCHV, CAB IFN or poly(I).poly(C), and showed similar expression patterns to mammals. The data indicate that an IFN antiviral innate immune response similar to that in mammals exists in the UV-inactivated GCHV-infected CAB cells, and the IFN response contributes to the formation of an antiviral state probably through JAK-STAT signaling pathway. This study provides strong evidence for existence of IFN antiviral innate immune response in fish, and will assist in elucidating the origin and evolution of vertebrate IFN system. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

雌激素是人体内重要的激素之一,具有广泛的生理功能。雌激素缺乏与许多疾病相关,如卵巢功能低下,更年期综合征以及骨质疏松等;雌激素过剩也将导致某些疾病,如乳腺癌、卵巢癌、子宫内膜癌等。目前,如何降低肿瘤组织中的雌激素水平而达到治疗肿瘤的目的,已经得到广泛的研究,但促雌激素生成或调节卵巢功能药物或其相关研究则很少。 本实验室前期的研究发现,瓦山安息香属植物果实中的乙醇提取物具有促雌激素生成作用,通过活性追踪和结构鉴定,确认促E2 生成的主要成分为苯并呋喃类化合物。苯并呋喃类化合物的作用与芳香酶有关,但其确切的作用机理有待证实和深入研究。 为了探讨安息香苯并呋喃类化合物的促雌激素合成的作用机理,拟采用如下的实验方案: 1、细胞学方面,对小鼠3T3-L1 前脂肪细胞、人乳腺癌细胞MCF-7、MDA-MB-231 以及人卵巢癌细胞OVCAR-3、OVCAR-4、OVCAR-5、OVCAR-8、IGROV1 等细胞株,采用RT-PCR 和ELISA 方法研究芳香酶Aro基因的表达和雌二醇E2 的生成,芳香酶抑制剂Formestane 作为阳性对照,研究时效曲线和量效曲线,确定安息香苯并呋喃类化合物SP25 的有效浓度和作用时间。 2、RNAi 方面,设计合成了针对人芳香酶Aro基因的3 对RNAi 序列,转染入细胞,芳香酶促进剂Forskolin 和地塞米松、芳香酶抑制剂Formestane 作为阳性对照,采用实时定量PCR 技术,研究RNA 干扰后,安息香苯并呋喃类化合物SP25 对人芳香酶Aro基因表达水平瓦山安息香苯并呋喃促雌激素合成的机理研究的影响。 3、雌激素受体方面,设计一段ERE 的雌激素调控元件,构建重组荧光素酶报告基因载体,瞬时转染人乳腺癌细胞株MDA-MB-231,建立针对雌激素受体的报告基因筛选模型,观察安息香苯并呋喃类化合物SP25 对雌激素受体的选择性和亲和力,从受体水平考察安息香苯并呋喃类化合物SP25 促进雌激素生成的药理学机理。 实验结果显示: 1、分化后的小鼠3T3-L1 前脂肪细胞、人乳腺癌细胞MCF-7 、MDA-MB-231 以及人卵巢癌细胞OVCAR-3、OVCAR-4、OVCAR-8 等细胞株具有芳香酶基因的表达。睾酮向雌二醇的转化能够被芳香酶抑制剂Formestane 所阻断,其中OVCAR-3 最适合进行下一步的RNAi研究。 2、RNAi 实验结果显示,设计的3 对RNAi 序列中R2 的干扰效果最强,相应的阴性对照C2 与R2 的表达量相差118 倍(24 小时)和19 倍(48 小时),显示R2/C2 这组序列可用于进一步的RNAi 试验。以R2 干扰OVCAR-3 细胞株,药物作用24、48 小时后,芳香酶抑制剂Formestane 与R2 相对表达量相比分别为0.83 倍和0.04 倍;芳香酶促进剂Forskolin 与R2 相对表达量相比分别为3.61 和1.84 倍;芳香酶促进剂地塞米松与R2 相对表达量相比分别为5.76 倍和3.49倍;苯并呋喃类化合物SP25 与R2 相对表达量相比分别为8.13 倍和4.59 倍。实验证实安息香苯并呋喃类化合物SP25 能够促进因RNAi 而发生基因沉默的人芳香酶Aro表达水平的上调。 3、雌激素受体实验结果显示,构建成功重组pERE-pGL3-promoter 荧光素酶报告基因载体和基于报告基因系统的雌激素受体激动剂或拮抗剂的细胞筛选模型。实验结果表明安息香苯并呋喃类化合物SP25 与雌激素受体ERα和ERβ亲和力选择性之比约为3:1 ,SP25通过与雌激素受体ERα结合作用其受体,刺激芳香酶的表达。 本课题通过RNA 干扰、ELISA、荧光实时定量PCR、报告基因筛选模型等技术手段,从细胞水平、蛋白酶水平和基因表达水平、雌激素受体水平等方面系统地研究了从瓦山安息香属植物果实中提取的苯并呋喃SP25 促进促雌激素生成的机理研究。试验结果显示苯并呋喃类化合物SP25 促雌激素生成的主要作用机制是直接促进芳香酶基因表达水平,以及与雌激素受体a 结合,刺激芳香酶活性。 Estrogen is an important hormone that has versatile physiologicalfunctions. Lack of estrogen will lead to many diseases such as lower ovarianfunction, climacteric syndrome and osteoporosis. Excessive estrogen alsoinduces breast carcinoma, oophoroma and endometrial carcinoma and otherdiseases. To depress the estrogen level in tumor tissue to cure carcinomawas widely studied, but there is only few studies reported on the induction ofestrogen and on the regulation of ovary function. We found that the extracts from seeds of Styrax perkinsiae couldpromote the synthesis of estrogen. The active compounds benzofurans wereidentified. Effect of benzofurans may be related to aromatase, but the mechanism was not clear. To reveal the mechanism of these benzofurans to promote estrogensynthesis, the following protocols were adopted: 1 Cytology: 3T3-L1 preadipocytes,human ovary carcinoma celllines OVCAR-3,OVCAR-4,OVCAR-5,OVCAR-8,IGROV1 andbreast carcinoma cell lines MCF-7 and MDA-MB-231 were usedto determine Aro gene expression and estrogen production withRT-PCR AND ELISA methods. Formestane, an aromataseinhibitor, was used as positive control. And dose-curve,time-curve and the effective concentration of SP25 were also studied. 2 Designed 3 pairs of RNAi for human aromatase gene, andtransfected into cell. Aromatase inducer Forskolin andDexamethasone, and aromatase inhibitor Formestane were usedas positive controls. We studied the change of Aro expressionlevel with SP25 by using real-time PCR after RNA interfering. 3 Estrogen Receptor: We constructed the recombined Luciferasereport vector and establish a screening system for estrogenagonist and antagon. With this system, we studied the affinity ofSP25 and estrogen receptor. Results: 1 Differentiated 3T3-L1 preadipocytes¡¢human ovary carcinomacell lines:OVCAR-3, OVCAR-4, OVCAR-8 and breast carcinomacell lines MCF-7, MDA-MB-231 had detected aromatase geneexpression.And OVCAR-3 is more suitable for further aromatasegene function research. 2 In RNAi assay, R2 has a strong interfering effcet in OVCAR-3 cellline, and ratio of C2 (the negative control) to R2 were 118 times(24 hours) and 19 times (48 hours). This means sucessful inRNA interfering. After R2 acted on OVCAR-3 cell line, the ratiosof formestane to R2 were 0.83 and 0.04 times, 5.76 and 3.49times (Dex), 3.61 and 1.84 times (forskolin) and 8.13 and 4.59times (sp25) after drug treated 24 or 48 hours respectively.These results indicated that SP25 can directly induce aromatasegene up-regulation. 3 We had constructed pERE-pGL3-promoter recombined vectorand the Luciferase report gene screening system. Luciferasereport gene assay showed that sp25 had a higher affinity with strogen receptor alpha than estrogen receptor beta, this indicated that SP25 can act on estrogen receptor and induce aromatase. Our results revealed that the mechanisms of benzofuran to promoteestrogen were the upregulation aromatase gene expression and promotion ofaromatase activity and have partially elective affinity with estrogen receptoralpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage,carbon ion irradiation resulted in an approximately 1.9–2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might,at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane Subunit gp91(phox) was dose-dependent. Meanwhile, the cytoplasmic subunit p47(phox) was translocated to the cell membrane and localized with p22(phox) and gp91(phox) to form reactive NADPH oxidase. Our data Suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15A degrees C and 3.9-fold at 4A degrees C compared to the alga at 25A degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cluster of 11 interferon (IFN) genes were identified in the Atlantic salmon genome linked to the growth hormone I gene. The genes encode three different IFN subtypes; IFNa (two genes), IFNb (four genes) and IFNc (five genes), which show 22-32% amino acid sequence identity. Expression of the fish IFNs were studied in head kidney, leukocytes or To cells after stimulation with the dsRNA poly I:C or the imidazoquinoline S-27609. In mammals, poly I:C induces IFN-beta through the RIG-I/MDA5 or the TLR3 pathway, both of which are dependent on NF-kappa B. In contrast, S-27609 induces mammalian IFN-alpha in plasmacytoid dendritic cells through the TLR7 pathway independent of NF-kappa B. The presence of an NF-kappa B site in their promoters and their strong up-regulation by poly I:C, suggest that salmon IFNa1/IFNa2 are induced through similar pathways as IFN-beta. In contrast, the apparent lack of NF-kappa B motif in the promoter and the strong upregulation by S-27609 in head kidney and leukocytes, suggest that IFNb genes are induced through a pathway similar to mammalian IFN-alpha. IFNc genes showed expression patterns different from both IFNa and IFNb. Taken together, salmon IFNa and IFNb are not orthologs of mammalian IFN-beta and IFN-alpha, respectively, but appear to utilize similar induction pathways. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although lactic acidosis is a prominent feature of solid tumors, we still have limited understanding of the mechanisms by which lactic acidosis influences metabolic phenotypes of cancer cells. We compared global transcriptional responses of breast cancer cells in response to three distinct tumor microenvironmental stresses: lactic acidosis, glucose deprivation, and hypoxia. We found that lactic acidosis and glucose deprivation trigger highly similar transcriptional responses, each inducing features of starvation response. In contrast to their comparable effects on gene expression, lactic acidosis and glucose deprivation have opposing effects on glucose uptake. This divergence of metabolic responses in the context of highly similar transcriptional responses allows the identification of a small subset of genes that are regulated in opposite directions by these two conditions. Among these selected genes, TXNIP and its paralogue ARRDC4 are both induced under lactic acidosis and repressed with glucose deprivation. This induction of TXNIP under lactic acidosis is caused by the activation of the glucose-sensing helix-loop-helix transcriptional complex MondoA:Mlx, which is usually triggered upon glucose exposure. Therefore, the upregulation of TXNIP significantly contributes to inhibition of tumor glycolytic phenotypes under lactic acidosis. Expression levels of TXNIP and ARRDC4 in human cancers are also highly correlated with predicted lactic acidosis pathway activities and associated with favorable clinical outcomes. Lactic acidosis triggers features of starvation response while activating the glucose-sensing MondoA-TXNIP pathways and contributing to the "anti-Warburg" metabolic effects and anti-tumor properties of cancer cells. These results stem from integrative analysis of transcriptome and metabolic response data under various tumor microenvironmental stresses and open new paths to explore how these stresses influence phenotypic and metabolic adaptations in human cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.