881 resultados para total antioxidant performance assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While methods to evaluate antioxidant capacity in animals exist, one problem with the models is induction of oxidative stress. It is necessary to promote a great enough challenge to induce measurable alterations to oxidative parameters while ensuring the protocol is compatible with animal welfare. The aim of the present study was to evaluate caged transport as a viable short-term stress that would significantly affect oxidative parameters. Twenty adult Beagle dogs, maintained on the same diet for 60 d prior to the transport, were included in the study. To simulate the stress, the dogs were housed in pairs in transport cages (1·0 m × 1·0 m × 1·5 m), placed on a truck coupled to a trailer and transported for a period of 15 min. Blood collection was performed immediately before and again 3 h after the transportation to evaluate oxidative parameters in blood serum, including thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), sequestration activity of the radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), protein carbonylation (PC), total sulfhydryl groups (SH), alpha-tocopherol (αToc) and retinol (Ret). PC, SH and αToc were not significantly changed in the study; however, TBARS, TAC and DPPH increased, whereas Ret decreased after the transport. Although the lack of a control group of dogs not submitted to transport is a limitation to be considered, we conclude that the transport model is effective in inducing an antioxidant response in dogs and relevant blood parameters show sensitivity to this proposed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. To test the hypothesis that consumption of 100% orange juice (OJ) would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference); metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin); oxidative biomarkers (malondialdehyde and DPPH(•)); inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]); cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ); and diet were evaluated before and after consumption of OJ for 8 weeks. The major findings of this study were: 1) no alteration in body composition in either group; 2) improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3) a potential stimulation of the immune response due to increase in IL-12; 4) anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5) antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the relationship between digestible lysine and metabolizable energy for barrow and gilts from 24 to 50 kg. Performance, digestibility and blood profile were studied. The experimental design was of randomized blocks, with five treatments, eight replicates and two animals per experimental unit in the performance assay and four replicates and one animal per experimental unit in the digestibility assay. The blood profile was chosen at 20 random animals of each sex, with four replicates per treatment and the animal as experimental unit. The treatments were 0.80, 0.90, 1.00, 1.10 and 1.20% digestible lysine. There was a linear effect of lysine levels on weight gain and feed conversion in females and crude protein in both sexes, gross energy excreted in the urine (kcal) and digestible energy (kcal). A quadratic effect of the amino acid studied in the daily consumption of crude protein (g) in both sexes, weight gain and feed conversion of barrows, as well as the nitrogen excreted in the urine (g) and nitrogen retained, and absorbed and retained. The relationship between neutrophils and lymphocytes had quadratic responses with increasing levels of lysine. The maximum performance for the studied genotype was obtained with 0.88 and 0.91% of digestible lysine or 2.60 and 2.67 g of digestible lysine/Mcal of metabolizable energy for females and barrows, respectively, corrected for digestibility trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. J. Cell. Biochem. 113: 174183, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O estresse oxidativo, decorrente de uma atividade física, leva a peroxidação lipídica de membranas celulares, além de danos protéicos e em ácidos nucléicos, e um dos produtos finais desta reação é o malondialdeído (MDA). A glutationa reduzida (GSH), considerada um antioxidante multifuncional, está presente no plasma e principalmente nas hemácias e tem importância pelo fato de ser um dos índices da capacidade total antioxidante do corpo após um estresse oxidativo. Com o objetivo de avaliar o estresse oxidativo em diferentes condições de treinamento físico, determinaram-se a concentração de MDA sérico e GSH eritrocitária em 45 cavalos da raça American Trotter e mestiços divididos em três grupos: G1 (sem treinamento), G2 (até 6 meses de treinamento) e G3 (treinamento há mais de 12 meses). Observou-se que o MDA teve um valor significativamente menor no grupo de animais sem treinamento físico. Não houve diferença estatística significante para GSH corrigida pela Hb e para GSH corrigida pelo VG entre os grupos analisados, mas houve uma aparente tendência a maiores valores no G2, no qual o sistema antioxidante está em fase de adaptação ao treinamento físico constante e suas consequentes injúrias. Conclui-se que a atividade física acarreta danos celulares frente ao estresse oxidativo, mas o sistema antioxidante tem papel fundamental nesta homeostasia observando uma adaptação às injúrias causadas pelos radicais livres.