990 resultados para suma
Resumo:
A menudo se piensa que en las Matemáticas no 69 hay lugar para el ensayo y el error, propagando la idea de que gran parte de la labor del matemático es tener la ocurrencia apropiada. En este artículo mostramos dos problemas que, aunque aparentemente deberían resolverse usando la misma idea, son resueltos sin justificación alguna en los libros de texto utilizando ideas diferentes. Además, presentamos otra situación mucho más próxima al estudiante con la misma dificultad subyacente y que sirve para explicar dicha dificultad de un modo más adecuado al nivel del alumno.
Resumo:
Ya vimos en anteriores artículos que cuando aparecen en pantalla cálculos aritméticos no es inusual la presencia de errores. Lo volveremos a constatar, pero en esta ocasión fijaremos la atención, además, en el sentido que dichos cálculos tienen dentro del guión. Quizás esa injustificable dejadez numérica se deba en ocasiones a que su aparición no responde al interés por el resultado en sí, sino a que se usan como medio expresivo.
Resumo:
Generalmente, los estudiantes de bachillerato y universitarios tienen dificultades para comprender los conceptos más elementales de probabilidad y estadística. La presentación de conceptos abstractos de una forma visual y dinámica puede ayudar a comprenderlos mejor. La simulación de experimentos aleatorios ayudará a conseguirlo. Presentamos a continuación algunas de las actividades preparadas para ello.
Resumo:
En estadística y probabilidad encontramos diferentes paradojas de solución adsequible a los estudiantes que permiten organizar actividades didácticas en la enseñanza y aprendizaje. En este trabajo describimos la paradoja de Simpson, que produce múltiples errores en la interpretación de la asociación y correlación. Describimos la paradoja y su historia, algunas soluciones y ejemplos. También analizamos los contenidos estadísticos trabajados en su solución, así como los posibles razonamientos erróneos de los estudiantes.
Resumo:
A mediados del siglo XVIII el prolífico y genial matemático suizo leonhard Euler analizó y resolvió un juego de probabilidad con cartas llamado Rencontre. Como otros problemas probabilísticos, el enunciado es fácilmente comprensible, su análisis no es elemental y el resultado parece contrario a la intuición o, cuando menos, sorprendente. Euler utiliza, para la resolución del problema, la combinatoria y la suma de ciertas sucesiones. En este artículo se pretende llegar a la misma conclusión recurriendo a unas matemáticas más cercanas al alumno de bachillerato.
Resumo:
Si en la primera parte de este trabajo presentamos la aplicación «movimientos en el plano» para el tratamiento de la simetria axial en esta segunda parte, aunque no cambiemos de temática, vamos a centrarnos en una perspectiva más interactiva.
Resumo:
En el presente artículo se pretenden identificar los puntos críticos que entrañan mayor dificultad para los alumnos dentro de los contenidos numéricos en educación primaria. La finalidad didáctica de este trabajo reside en ser capaces de saber dónde se sitúan esos puntos críticos para proponer tratamientos educativos que los superen. También se proporcionan unas indicaciones para la enseñanza basadas en el carácter visual y espacial de los números, así como un conjunto de actividades abiertas, susceptibles de ser empleadas en el trabajo con los alumnos.
Resumo:
El objetivo de este clip es que la próxima vez que le pregunten: ¿para que sirven las raíces cuadradas? usted pueda responder: para hacer las raciones de espaguetis… y otras cosas. En el variado y apetitoso mundo de la pasta, los “espaguetis” han alcanzado enorme popularidad. Ya hace años la despampanante actriz italiana Sophia Loren dijo con orgullo aquello de que: todo lo que ve lo debo a los espaguetis. Saber comer espaguetis con dignidad (sin mancharse) no es tarea simple pues la cuchara debe facilitar el enrollado de la pasta en el tenedor inclinado y luego esta debe emprender el largo viaje que va del plato a la boca del comensal, sobrevolando el vestido.
Resumo:
Presentamos una actividad que relaciona los fractales, y más concretamente la dimensión fractal, con las ciudades. Se realiza una breve incursión en el concepto de fractal y dimensión fractal para pasar posteriormente a una ejemplificación y una propuesta de trabajo en el que mostramos un posible orden en los pasos a seguir para estimar la dimensión fractal del contorno de una ciudad. Mostramos los resultados obtenidos por alumnos de 4º de ESO en el cálculo de la dimensión fractal del contorno de las localidades a las que pertenecen los alumnos del centro con el objetivo de comparar la “rugosidad” de todas ellas.
Resumo:
En la sociedad actual la educación en valores y el fomento a la lectura, entre el alumnado de la enseñanza secundaria, tiene una singular importancia. Con este trabajo, desde el área de matemáticas y de modo interdisciplinar, hemos querido contribuir al enriquecimiento de nuestro alumnado para analizar y valorar fenómenos sociales como la diversidad cultural, la igualdad entre los sexos o la convivencia pacífica, desarrollando simultáneamente contenidos específicos de las distintas disciplinas desde las cuales puede ser analizada la lectura de El señor del cero.
Resumo:
La justificación de la presencia de la matemática en la educación secundaria puede darse a partir de perspectivas internas o externas a ella. El artículo pone de manifiesto que en las clases de matemáticas se da un cierto desequilibrio hacia los argumentos internos, lo que dificulta el acercamiento a las matemáticas de buena parte del alumnado y puede obstaculizar la adquisición de la competencia básica en la materia. En el artículo se apuesta por equilibrar la balanza acentuando una visión social y práctica de las matemáticas a partir de la introducción en el aula de contextos y situaciones donde sean necesarias.
Resumo:
En este trabajo se presentan y analizan los problemas propuestos en el concurso matemático El inGENIO no tiene edad, que tuvo lugar en nuestro colegio y en el que se enfrentaron alumnos de todas las edades, desde infantil hasta bachillerato. Cada problema iba relacionado con un paso para construir una estrella de papel con interesantes propiedades matemáticas. El equipo que resolvía todos sus ejercicios aprendía a crear estrellas.
Resumo:
Muchos son los líquidos (aceite, vinagre, leche, vino, licor...) y otros productos (sal, especies, arroz...) que son descritos en las recetas de cocina en relación al volumen. A veces se expresan dichos volúmenes en unidades precisas (litros, centilitros, mililitros...) pero en muchas ocasiones se presuponen las capacidades de determinados contenedores (cucharas, tazas, vasos...) para “aclarar” los volúmenes implicados. Cuando le recomiendan “ponga dos tazas de arroz por persona”, si usted no es del club de los iniciados, su estupor puede ser mayúsculo pues al abrir el armario de la cocina encontrará tazas de lo más diverso dispuestas a ser “la taza” recomendada.
Resumo:
El objetivo de este artículo es presentar varias pruebas visuales sobre la irracionalidad de raíz de 2, las cuales no son muy conocidas comparadas con otras pruebas, como por ejemplo, las demostraciones del teorema de Pitágoras. Además, esas demostraciones pueden ser útiles como una alternativa a la clásica demostración griega y de esta forma se intentará llamar la atención de los alumnos.
Resumo:
La Constitución de Cádiz (1812) inicia el origen de la enseñanza secundaria en España. Dichos estudios corren parejos con el desarrollo de la burguesía como clase diferenciada, y como tal se identifican los nuevos estudios con la nueva clase social. Paralelamente al nacimiento de la secundaria, los contenidos en matemáticas de los programas, se van abriendo paso y quitando horas a los tradicionales de humanidades. El recorrido histórico termina con la trascendental Ley Moyano en 1857.