983 resultados para stiffness
Resumo:
[EN]The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element-finete element coupling model, are provided in this paper.
Resumo:
Die vorliegende Arbeit beschaeftigt sich mit der Untersuchung vonPolymeren mit intrinsischer Steifigkeit. Es werden vor allem lokale statische unddynamische Eigenschaften anhand zweier verschiedener Simulationsmodellebetrachtet: Ein generisches Polymermodell, bei dem nur dieSteifigkeit als ein das spezifische Polymer charakterisierenden Parametereingeht und ein atomistisches Modell fuer trans-Polyisopren. Mit Hilfe des ersten Modells koennen Statik und Dynamik wurmartiger Kettenbeobachtet werden. Das Blob-Konzept ist eine angemessene statischeBeschreibung. Lokale Orientierungen haengen schwach von derSteifigkeit ab. Das Reptationsmodell kann die beobachtete Dynamik fuer lange Kettennicht mehr angemessen beschreiben. Lange Ketten bewegen sich, als obsie in Roehren gezwaengt waeren; jedoch ist die Bewegung starkabhaengig von der Steifigkeit. Fuer Ketten dieser Art konntequalitativ das Verhalten reproduziert werden, das in NMR-Experimentenbeobachtet wird. Eine Verhakungslaenge laesst sich fuer solche Kettenkaum mehr definieren. Dynamische Strukturfunktionen und insbesonderedie direkte Visualisierung der Ketten verdeutlichen die effektiv aufeine Roehre beschraenkte Bewegung. Das atomistische Polyisoprenmodell wurde mit verschiedenen Experimenten,verglichen. In den Simulationen bei konnten qualitativ undsemiquantitativ experimentelle Ergebnisse reproduziert werden. Zuletzt wurden die Laengen- und Zeitskalen der beiden Modelleerfolgreich aufeinander abgebildet.
Resumo:
In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.
Resumo:
Background and aims: Sorafenib is the reference therapy for advanced Hepatocellular Carcinoma (HCC). No method exists to predict in the very early period subsequent individual response. Starting from the clinical experience in humans that subcutaneous metastases may rapidly change consistency under sorafenib and that elastosonography a new ultrasound based technique allows assessment of tissue stiffness, we investigated the role of elastonography in the very early prediction of tumor response to sorafenib in a HCC animal model. Methods: HCC (Huh7 cells) subcutaneous xenografting in mice was utilized. Mice were randomized to vehicle or treatment with sorafenib when tumor size was 5-10 mm. Elastosonography (Mylab 70XVG, Esaote, Genova, Italy) of the whole tumor mass on a sagittal plane with a 10 MHz linear transducer was performed at different time points from treatment start (day 0, +2, +4, +7 and +14) until mice were sacrified (day +14), with the operator blind to treatment. In order to overcome variability in absolute elasticity measurement when assessing changes over time, values were expressed in arbitrary units as relative stiffness of the tumor tissue in comparison to the stiffness of a standard reference stand-off pad lying on the skin over the tumor. Results: Sor-treated mice showed a smaller tumor size increase at day +14 in comparison to vehicle-treated (tumor volume increase +192.76% vs +747.56%, p=0.06). Among Sor-treated tumors, 6 mice showed a better response to treatment than the other 4 (increase in volume +177% vs +553%, p=0.011). At day +2, median tumor elasticity increased in Sor-treated group (+6.69%, range –30.17-+58.51%), while decreased in the vehicle group (-3.19%, range –53.32-+37.94%) leading to a significant difference in absolute values (p=0.034). From this time point onward, elasticity decreased in both groups, with similar speed over time, not being statistically different anymore. In Sor-treated mice all 6 best responders at day 14 showed an increase in elasticity at day +2 (ranging from +3.30% to +58.51%) in comparison to baseline, whereas 3 of the 4 poorer responders showed a decrease. Interestingly, these 3 tumours showed elasticity values higher than responder tumours at day 0. Conclusions: Elastosonography appears a promising non-invasive new technique for the early prediction of HCC tumor response to sorafenib. Indeed, we proved that responder tumours are characterized by an early increase in elasticity. The possibility to distinguish a priori between responders and non responders based on the higher elasticity of the latter needs to be validated in ad-hoc experiments as well as a confirmation of our results in humans is warranted.
Resumo:
PURPOSE. Portal pressure is measured invasively as Hepatic Venous Pressure Gradient (HVPG) in the angiography room. Liver stiffness measured by Fibroscan was shown to correlate with HVPG values below 12 mmHg. This is not surprising, since in cirrhosis the increase of portal pressure is not directly linked with liver fibrosis and consequently to liver stiffness. We hypothesized that, given the spleen’s privileged location upstream to the whole portal system, splenic stiffness could provide relevant information about portal pressure. Aim of the study was to assess the relationship between liver and spleen stiffness measured by Virtual Touch™ (ARFI) and HVPG in cirrhotic patients. METHODS. 40 consecutive patients (30 males, mean age 62y, mean BMI=26, mean Child-Pugh A6, mean platelet count=92.000/mmc, 19 HCV+, 7 with ascites) underwent to ARFI stiffness measurement (10 valid measurements in right liver lobe both surface and centre, left lobe and 20 in the spleen) and HPVG, blindly to each other. Median ARFI values of 10 samplings on every liver area and of 20 samplings on spleen were calculated. RESULTS. Stiffness could be easily measured in all patients with ARFI, resulting a mean of 2,61±0,76, 2,5±0,62 and 2,55±0,66 m/sec in the liver areas and 3.3±0,5 m/s in the spleen. Median HPVG was 14 mmHg (range 5-27); 28 patients showed values ≥10 mmHg. A positive significant correlation was found between spleen stiffness and HPVG values (r=0.744, p<0.001). No significant correlation was found between all liver stiffness and HVPG (p>0,05). AUROC was calculated to test spleen stiffness ability in discriminating patients with HVPG ≥10. AUROC = 0.911 was obtained, with sensitivity of 69% and specificity of 91% at a cut-off of 3.26 m/s. CONCLUSION. Spleen stiffness measurement with ARFI correlates with HVPG in patients with cirrhosis, with a potential of identifying patients with clinically significant portal hypertension.
Resumo:
Geometric nonlinearities of flexure hinges introduced by large deflections often complicate the analysis of compliant mechanisms containing such members, and therefore, Pseudo-Rigid-Body Models (PRBMs) have been well proposed and developed by Howell [1994] to analyze the characteristics of slender beams under large deflection. These models, however, fail to approximate the characteristics for the deep beams (short beams) or the other flexure hinges. Lobontiu's work [2001] contributed to the diverse flexure hinge analysis building on the assumptions of small deflection, which also limits the application range of these flexure hinges and cannot analyze the stiffness and stress characteristics of these flexure hinges for large deflection. Therefore, the objective of this thesis is to analyze flexure hinges considering both the effects of large-deflection and shear force, which guides the design of flexure-based compliant mechanisms. The main work conducted in the thesis is outlined as follows. 1. Three popular types of flexure hinges: (circular flexure hinges, elliptical flexure hinges and corner-filleted flexure hinges) are chosen for analysis at first. 2. Commercial software (Comsol) based Finite Element Analysis (FEA) method is then used for correcting the errors produced by the equations proposed by Lobontiu when the chosen flexure hinges suffer from large deformation. 3. Three sets of generic design equations for the three types of flexure hinges are further proposed on the basis of stiffness and stress characteristics from the FEA results. 4. A flexure-based four-bar compliant mechanism is finally studied and modeled using the proposed generic design equations. The load-displacement relationships are verified by a numerical example. The results show that a maximum error about the relationship between moment and rotation deformation is less than 3.4% for a flexure hinge, and it is lower than 5% for the four-bar compliant mechanism compared with the FEA results.
Resumo:
Introduction: Antiviral therapy can prevent disease progression in patients with chronic hepatitis C . Transient Elastografy (TE; Fibroscan) is an accurate surrogate marker to liver fibrosis, by measuring liver stiffness (LS). LS decrease has been associated with sustained virologic response (SVR). Aim: to assess the changes of LS measurments in CHC patients during and one year after Interferon (IFN)-based antiviral therapy (IFN/ribavirin) or (telaprevir+IFN/ribavirin). Methods: consecutive 69 CHC patients (53.6% females, mean age 57.9 ± 11.4) who underwent antiviral therapy for at least 20 weeks were enrolled. LS was measured using FibroScan at baseline, after three months, at the end of treatment and one year after treatment discontinuation. Fibrosis was graded using METAVIR score. Results: twenty patients treated with triple therapy and 49 with IFN/ribavirin. Fifty patients had SVR and 19 were non-responders. SVR patients: F0-F1, F2 and F3 patients (39.1%, 7.2% and 17.4%; respectively) showed no significant LS decrease (P= 0.186, 0.068 and 0.075; respectively). Conversely, in F4 patients (36.2%) LS was significantly decreased (P=0.015) after one year of treatment completion. In all patients with no SVR, no significant decrease in LS was observed. Interestingly, all Patients with F4 fibrosis (even non-responders) showed an initial significant decrease in LS (P=0.024) at 3 months after the start of treatment. However, this decrease was not predictive of SVR; area under the ROC curve 0.369 (CI %: 0.145-0.592) P= 0.265. Conclusion: Our study showed that initial decrease in LSM, especially in patients with higher baseline fibrosis score is unlikely to predict an SVR. In addition no significant association was found between clinical or virological parameters and fibrosis improvement. Further studies are needed to delineate the most appropriate clinical scenarios for the LSM by Fibroscan in chronic hepatitis C and its role in monitoring the response to antiviral treatment.
Resumo:
The work of this thesis is on the implementation of a variable stiffness joint antagonistically actuated by a couple of twisted-string actuator (TSA). This type of joint is possible to be applied in the field of robotics, like UB Hand IV (the anthropomorphic robotic hand developed by University of Bologna). The purposes of the activities are to build the joint dynamic model and simultaneously control the position and stiffness. Three different control approaches (Feedback linearization, PID, PID+Feedforward) are proposed and validated in simulation. To improve the properties of joint stiffness, a joint with elastic element is taken into account and discussed. To the end, the experimental setup that has been developed for the experimental validation of the proposed control approaches.
Resumo:
Bone pathologies as detected on MRI are associated with the presence of pain in knee osteoarthritis (OA). The authors examined whether bone attrition assessed on x-rays was associated with pain, stiffness and disability.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
To test if inflammation also interferes with liver stiffness (LS) assessment in alcoholic liver disease (ALD) and to provide a clinical algorithm for reliable fibrosis assessment in ALD by FibroScan (FS).
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.