913 resultados para spatial distribution of plant
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The distribution of mercury in water, sediment and some biological samples of the Rushikulya estuary, east coast of India were assessed during Jan-Dec. 1989. Both the dissolved plus acid leachable mercury contents in water and the sediment mercury discerned conspicuous spatial and seasonal fluctuations. Adsorption on to the suspended particulates was found to be the most likely mechanism for removal of mercury from the water column. Exchange of mercury from sediments to water was observed at high salinities (20-30x10-3). The residual mercury contents in the biological samples revealed that bio-accumulation by bottom-dwelling organisms are higher than the pelagic components.
Resumo:
1. The spatial and temporal abundance of the aphid Euceraphis betulae was investigated in relation to heterogeneity in host plant ( Betula pendula) vigour and pathogenic stress. The performance of aphids feeding on vigorous and stressed foliage was also examined. 2. The plant stress and plant vigour hypotheses have been suggested as opposing ways in which foliage quality influences herbivore abundance. In many plants, however, vigorous growing foliage co-exists with stressed or damaged foliage. 3. There was a negative correlation between branch growth ( vigour) and branch stress ( leaf chlorosis), with the most vigorous branches displaying little or no stress, and the most stressed branches achieving poor growth. There was a similar negative correlation between vigour and stress at the level of individual trees, which themselves represented a continuum in quality. 4. At the beginning of the season, E. betulae were intermittently more abundant on vigorous branches than on branches destined to become stressed, but aphids became significantly more abundant on stressed branches later in the season, when symptoms of stress became apparent. Similar patterns of aphid abundance were seen on vigorous and stressed trees in the following year. 5. Euceraphis betulae performance was generally enhanced when feeding on naturally stressed B. pendula leaves, but there was some evidence for elevated potential reproduction when feeding on vigorous leaves too. 6. Overall, plant stress probably influences E. betulae distribution more than plant vigour, but the temporal and spatial variability in plant quality suggests that plant vigour could play a role in aphid distribution early in the season.
Resumo:
Este estudo é parte do monitoramento limnológico empreendido pela Companhia Energética do Estado de São Paulo (CESP) durante o processo de enchimento do reservatório de Porto Primavera (Usina Hidrelétrica Engenheiro Sérgio Motta). Este reservatório, localizado no alto rio Paraná, entre os Estados de São Paulo e Mato Grosso, é o quarto maior do país. A primeira etapa de enchimento do lago começou em dezembro de 1998 e a segunda em março de 2001. Amostras para a análise da comunidade bentônica e das características sedimentológicas foram coletadas trimestralmente entre agosto de 1999 e novembro de 2001 e também em agosto de 2002 (11 campanhas). As coletas foram feitas em 13 estações de amostragem distribuídas no reservatório e em uma localizada a jusante da barragem. 128 táxons de invertebrados foram encontrados, sendo Mollusca, Annelida, Insecta e Nematoda os grupos dominantes durante praticamente todos os meses analisados. A classe Insecta foi a melhor representada, com 9 diferentes ordens, dentro das quais os Diptera contribuíram com a ocorrência de 63 táxons. A espécie exótica de bivalve Corbicula fluminea foi registrada em todas as estações de amostragem mostrando sua grande capacidade para colonizar novos habitats em regiões neotropicais. Variações consideráveis na densidade da fauna foram observadas para os diferentes períodos e locais analisados. A densidade máxima (média de 7812 ind.m-2) foi registrada no centro do reservatório enquanto que as densidades mínimas foram registradas na zona lacustre próxima à barragem (média de 9 ind.m-2). A maior riqueza de espécies por local/período (24 táxons) foi encontrada no trecho superior do reservatório (trecho fluvial). A diversidade máxima foi observada nas zonas superior e central do reservatório, com valores de 3.82 e 3.86 (bits.ind-1) no início (agosto/1999) e final (agosto/2002) do processo de enchimento, respectivamente. Não foi encontrado um padrão de distribuição dos grupos faunísticos que pudesse estar associado com a textura granulométrica dos diferentes locais amostrados. Por outro lado, constatou-se a diminuição, ou mesmo a não ocorrência de organismos, nas estações com elevada concentração de matéria orgânica (>40%) em baixo estado de degradação (grandes detritos vegetais). Tal fato pode estar relacionado com a falta de depósitos de sedimentos, dificultando a fixação de organismos da fauna bentônica, bem como com condições químicas mais redutoras em função da intensidade dos processos de decomposição da fitomassa inundada.
Resumo:
1. The spatial distribution of individual plants within a population and the population’s genetic structure are determined by several factors, like dispersal, reproduction mode or biotic interactions. The role of interspecific interactions in shaping the spatial genetic structure of plant populations remains largely unknown. 2. Species with a common evolutionary history are known to interact more closely with each other than unrelated species due to the greater number of traits they share. We hypothesize that plant interactions may shape the fine genetic structure of closely related congeners. 3. We used spatial statistics (georeferenced design) and molecular techniques (ISSR markers) to understand how two closely related congeners, Thymus vulgaris (widespread species) and T. loscosii (narrow endemic) interact at the local scale. Specific cover, number of individuals of both study species and several community attributes were measured in a 10 × 10 m plot. 4. Both species showed similar levels of genetic variation, but differed in their spatial genetic structure. Thymus vulgaris showed spatial aggregation but no spatial genetic structure, while T. loscosii showed spatial genetic structure (positive genetic autocorrelation) at short distances. The spatial pattern of T. vulgaris’ cover showed significant dissociation with that of T. loscosii. The same was true between the spatial patterns of the cover of T. vulgaris and the abundance of T. loscosii and between the abundance of each species. Most importantly, we found a correlation between the genetic structure of T. loscosii and the abundance of T. vulgaris: T. loscosii plants were genetically more similar when they were surrounded by a similar number of T. vulgaris plants. 5. Synthesis. Our results reveal spatially complex genetic structures of both congeners at small spatial scales. The negative association among the spatial patterns of the two species and the genetic structure found for T. loscosii in relation to the abundance of T. vulgaris indicate that competition between the two species may account for the presence of adapted ecotypes of T. loscosii to the abundance of a competing congeneric species. This suggests that the presence and abundance of close congeners can influence the genetic spatial structure of plant species at fine scales.
Resumo:
Background: Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods: The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results: Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion: The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance of adult men cases. Imported falciparum malaria in the non-endemic area of China, affected mainly by the malaria transmission in Yunnan, has increased both spatially and temporally. Specific intervention measures targeted at the mobile population groups are warranted.
Resumo:
Two ultrasound survey methods were used to determine the presence and activity patterns of New Zealand long-tailed bats (Chalinolobus tuberculatus) in the city of Hamilton. First, 13 monthly surveys conducted at 18 green spaces found C. tuberculatus in only one urban forest reserve, Hammond Bush, where they were found consistently throughout the year. Bat activity was strongly related to temperature. Second, twice-yearly citywide surveys conducted over 2 years determined the distribution and habitat associations of C. tuberculatus. Bats were found only in the southern part of the city and were strongly associated with the Waikato River. Bat activity was negatively correlated with housing and street light density and positively correlated with topographical complexity. In Hamilton, topographical complexity indicates the presence of gullies. Gullies probably provide foraging and roosting opportunities and connect the river to distant forest patches. These results suggest that urban habitats can be useful for bats if gullies can link these to distant habitat fragments.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.
Resumo:
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
We have shown previously that the Ca2+-specific fluorescent dyes chlortetracycline (CTC) and indo-1/AM can be used to distinguish between prestalk and prespore cells in Dictyostelium discoideum at a very early stage. In the present study, pre- and post-aggregative amoebae of Dictyostelium discoideum were labelled with CTC or indo-1 and their fluorescence monitored after being drawn into a fine glass capillary. The cells rapidly form two zones of Ca2+-CTC or Ca2+-indo-1 fluorescence. Anterior (air side) cells display a high level of fluorescence; the level drops in the middle portion of the capillary and rises again to a lesser extent in the posteriormost cells (oil side). When bounded by air on both sides, the cells display high fluorescence at both ends. When oil is present at both ends of the capillary, there is little fluorescence except for small regions at the ends. These outcomes are evident within a couple of minutes of the start of the experiment and the fluorescence pattern intensifies over the course of time. By using the indicator neutral red, as well as with CTC and indo-1, we show that a band displaying strong fluorescence moves away from the anterior end before stabilizing at the anterior-posterior boundary. We discuss our findings in relation to the role of Ca2+ in cell-type differentiation in Dictyostelium discoideum.
Resumo:
Habitat fragmentation is currently affecting many species throughout the world. As a consequence, an increasing number of species are structured as metapopulations, i.e. as local populations connected by dispersal. While excellent studies of metapopulations have accumulated over the past 20 years, the focus has recently shifted from single species to studies of multiple species. This has created the concept of metacommunities, where local communities are connected by the dispersal of one or several of their member species. To understand this higher level of organisation, we need to address not only the properties of single species, but also establish the importance of interspecific interactions. However, studies of metacommunities are so far heavily biased towards laboratory-based systems, and empirical data from natural systems are urgently needed. My thesis focuses on a metacommunity of insect herbivores on the pedunculate oak Quercus robur a tree species known for its high diversity of host-specific insects. Taking advantage of the amenability of this system to both observational and experimental studies, I quantify and compare the importance of local and regional factors in structuring herbivore communities. Most importantly, I contrast the impact of direct and indirect competition, host plant genotype and local adaptation (i.e. local factors) to that of regional processes (as reflected by the spatial context of the local community). As a key approach, I use general theory to generate testable hypotheses, controlled experiments to establish causal relations, and observational data to validate the role played by the pinpointed processes in nature. As the central outcome of my thesis, I am able to relegate local forces to a secondary role in structuring oak-based insect communities. While controlled experiments show that direct competition does occur among both conspecifics and heterospecifics, that indirect interactions can be mediated by both the host plant and the parasitoids, and that host plant genotype may affect local adaptation, the size of these effects is much smaller than that of spatial context. Hence, I conclude that dispersal between habitat patches plays a prime role in structuring the insect community, and that the distribution and abundance of the target species can only be understood in a spatial framework. By extension, I suggest that the majority of herbivore communities are dependent on the spatial structure of their landscape and urge fellow ecologists working on other herbivore systems to either support or refute my generalization.
Resumo:
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.
Resumo:
Invasive species demonstrate rapid evolution within a very short period of time allowing one to understand the underlying mechanism(s). Lantana camara, a highly invasive plant of the tropics and subtropics, has expanded its range and successfully established itself almost throughout India. In order to uncover the processes governing the invasion dynamics, 218 individuals from various locations across India were characterized with six microsatellites. By integrating genetic data with niche modelling, we examined the effect of drift and environmental selection on genetic divergence. We found multiple genetic clusters that were non-randomly distributed across space. Spatial autocorrelation revealed a strong fine-scale structure, i.e. isolation by distance. In addition, we obtained evidence of inhibitory effects of selection on gene flow, i.e. isolation by environmental distance. Perhaps, local adaptation in response to selection is offsetting gene flow and causing the populations to diverge. Niche models suggested that temperature and precipitation play a major role in the observed spatial distribution of this plant. Based on a non-random distribution of clusters, unequal gene flow among them and different bioclimatic niche requirements, we concluded that the emergence of ecotypes represented by two genetic clusters is underway. They may be locally adapted to specific climatic conditions, and perhaps at the very early stages of ecological divergence.