996 resultados para skull base
Resumo:
Ternary copper(II) complex Cu(a-lipo)(phen)(Cl)](NO3) where a-lipo = a-lipoic acid, phen is N, N-donor heterocyclic base, 1,10-phenanthroline was synthesized, characterized, and its DNA binding and cleavage activity were studied. Binding interactions of the complex with calf thymus (CT) DNA has been investigated by emission, viscosity, and DNA melting studies. The complex shows efficient oxidative cleavage of SC-DNA in the presence of 3-mercaptopropionic acid involving hydroxyl radical species, and results of control experiments exhibit the inhibition of DNA cleavage in the presence of hydroxyl radical scavengers, viz. DMSO and KI.
Resumo:
An industrial base oil, a blend of different paraffin fractions, is heated to 130 degrees C (1) in the ambient and (2) for use as a lubricant in a steel pin on a steel disk sliding experiment. The base oil was tested with and without test antioxidants: dimethyl disulfide (DMDS) and alkylated diphenylamine (ADPA). Primary and secondary oxidation products were monitored continuously by FTIR over a 100 h period. In addition, friction and wear of the steel pin were monitored over the same period and the chemical transformation of the pin surface was monitored by XPS. The objective of this work is to observe the catalytic action of the steel components on the oil aging process and the efficacy of the antioxidant to reduce oxidation of oil used in tribology as a lubricant. Possible mechanistic explanations of the aging process as well as its impact on friction and wear are discussed.
Resumo:
Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of sym-N,N',N `'-triarylguanidines, ArN=C(NHAr)(2) (sym = symmetrical; Ar = 2-MeC6H4 (LH22-tolyl), 2-(MeO)C6H4 (LH22-anisyl), 4-MeC6H4 (LH24-tolyl), 2,5-Me2C6H3 (LH22,5-xylyl), and 2,6-Me2C6H3 (LH22,6-xylyl)) in toluene under reflux condition for 3 h afforded cis- or trans-Cl2Pt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (1), 2-(MeO)C6H4 (2), 4-MeC6H4 (3), 2,5-h Me2C6H3 (4), and 2,6-Me2C6H3 (5), respectively) in 83-96% yield. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-tolyl and LH24-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 h afforded acetate-substituted products, cis-(AcO)ClPt(S(O)Me-2)(ArN=C(NHAr)(2))] (Ar = 2-MeC6H4 (6) and 4-MeC6H4 (7)) in 83% and 84% yields, respectively. Reaction of cis-Cl2Pt(S(O)Me-2)(2)] with 1 equiv of LH22-anisyl and LH22-tolyl in the presence of 1 equiv of NaOAc in methanol under reflux condition for 3 and 12 h afforded six-membered C,N] platinacycles, Pt{kappa(2)(C,N)-C6H3R-3(NHC(NHAr)(=NAr))-2}Cl(S(O)Me-2)] (Ar = 2-RC6H4; R = OMe (8) and Me (9)), in 92% and 79% yields, respectively. The new complexes have been characterized by analytical and spectroscopic techniques, and further the molecular structures of 1, 2, 4, 5, 6, and 8 have been determined by single-crystal X-ray diffraction. The platinum atom in 1, 4, and 5 exhibited the trans configuration, while that in 2, 6, and 8 exhibited the cis configuration. Complex 6 is shown to be the precursor for 9, and the former is suggested to transform to the latter possibly via an intramolecular C-H activation followed by elimination of AcOH. The solution behavior of new complexes has been studied by multinuclear NMR (H-1, Pt-195, and C-13) spectroscopy. The new complexes exist exclusively as a single isomer (trans (1 and 5) and cis (6 and 7)), a mixture of cis and trans isomers with the former isomer being predominant in the case of 2 and the latter isomer being predominant in the case of 3. Complex 5 in the trans form revealed the presence of one isomer at 0.007 mM concentration and two isomers in about 1.00:0.12 ratio at 0.154 mM concentration as revealed by H-1 NMR spectroscopy, and this has been ascribed to the restricted Pt-S bond rotation at higher concentration. Platinacycle 8 exists as one isomer, while 9 exists as a mixture of seven isomers in solution. The influence of steric factor, pi-acceptor property of the guanidine, subtle solid-state packing forces upon the configuration of the platinum atom, and the number of isomers in solution have been outlined. Factors that accelerate or slow down the cycloplatination reaction, the role of NaOAc, and a plausible mechanism of this reaction have been discussed.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.
Resumo:
We consider a power optimization problem with average delay constraint on the downlink of a Green Base-station. A Green Base-station is powered by both renewable energy such as solar or wind energy as well as conventional sources like diesel generators or the power grid. We try to minimize the energy drawn from conventional energy sources and utilize the harvested energy to the maximum extent. Each user also has an average delay constraint for its data. The optimal action consists of scheduling the users and allocating the optimal transmission rate for the chosen user. In this paper, we formulate the problem as a Markov Decision Problem and show the existence of a stationary average-cost optimal policy. We also derive some structural results for the optimal policy.
Resumo:
The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.
Resumo:
In the present investigation, a Schiff base N'(1),N'(3)-bis(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbod ihydrazide (L-1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant K-b of 4.5 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant K-b of 5.7 x 10(4) M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through O-1(2) generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An enantioselective vinylogous umpolung addition of deconjugated butenolides to allenoates has been developed for the first time with the help of synergistic combination of an achiral phosphine and a chiral squaramide, and represents the first example of a catalytic enantioselective C gamma-C gamma bond formation between two different carbonyl partners.
Resumo:
This work describes the base triggered enhancement of first hyperpolarizability of a tautomeric organic molecule, namely, benzoylacetanilide (BA). We have used the hyper-Rayleigh scattering technique to measure the first hyperpolarizability (beta) of BA which exists in the pure keto form in water and as a keto-enol tautomer in ethanol. Its anion exists in equilibrium with the keto and enol forms at pH 11 in aqueous solution. The beta value of the anion form is 709 X 10(-30) esu, whereas that of the enol is 232 x 10(-3) esu and of the keto is 88 X 10(-30) esu. There is an enhancement of beta by similar to 8 times for the anion and similar to 3 times for the enol compared to the keto form. All these are achieved by altering the equilibrium between the three forms of BA by simple means. MP2 calculations reproduce the experimental trend, but the computed beta values are much lower than the measured values. DFT calculations with the standard B3LYP functional could not predict the right order in the beta values. The difference between experimental and calculated values is, perhaps, due to the fact that electron correlation effects are important in computing optical nonlinearities of large organic molecules and MP2 and B3LYP calculations done here for different forms of BA could not account for such effects adequately.
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
A new dinuclear cadmium(II) complex, Cd(L)(NCS)](2) (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino) ethylimino) methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent
Resumo:
Reaction of cobalt(II) perchlorate hexahydrate with a potentially tetradentate Schiff base ligand, HL (2-methoxy-6-(2-diethylaminoethylimino)methyl]phenol) in presence of sodium azide and sodium thiocyanate yields two complexes Co( L)( HL)(N-3)]center dot ClO4 ( 1) and Co( L)( HL)(NCS)] center dot ClO4 ( 2); both being characterized by different physicochemical methods. Crystal structure of 1 was determined by single crystal X-ray diffraction while that of 2 was reported earlier. In 1, the central cobalt(III) adopts slightly distorted octahedral geometry with same donor set to that of 2. Catalytic efficacy of the complexes towards epoxidation of different alkenes under aerobic condition were investigated in homogeneous medium which reveals that 1 is better catalyst than 2 with respect to alkene oxidation, reflected from the turn over frequencies (TOF) measured at an optimum temperature of 60 degrees C in acetonitrile. (C) 2014 Published by Elsevier B.V.
Resumo:
Insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(mu-Br)](2) with various alkynes in CH2Cl2 under ambient conditions afforded diinserted eight-membered palladacycles, (kappa(2)(C,N):eta(2)(C=C)-PdBr] (1-11), in high yield (76-96%), while insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(Lewis base)Br] (VI-XI), with various alkynes under the aforementioned conditions afforded monoinserted six-membered palladacycles, kappa(2)(C,N)-Pd(Lewis base)Br] (12-21), in high yield (81-91%) except for 14 (23%). The insertion reaction of VI with 2 equiv of dimethyl acetylenedicarboxylate (DMAD) and the insertion reaction of 12 with 1 equiv of DMAD in CH2Cl2 under ambient conditions resulted in the formation of a diinserted zwitterionic five-membered palladacycle, kappa(2)(C,C)Pd(2,6-lutidine)Br] (22), in 76% and 70% yields, respectively. Palladacycle 22 upon reaction with AgOTf in wet MeCN afforded the ionic palladacycle kappa(2)(C,C)Pd(2,6-lutidine)(H2O)]OTf] (23) in 78% yield. The ring size of the ``kappa(2)(C,N)Pd]'' unit in the structurally characterized diinserted palladacycles (1 center dot 2CH(2)Cl(2)center dot H2O, 2, 5, and 7), and monoinserted palladacycles (17, 18, and 20 center dot C7H8 H2O) is smaller than that anticipated for mono- and diinserted palladacycles, and this feature is mainly ascribed to the proclivity of III-XI to undergo ring contraction cum amine-imine tautomerization upon alkyne insertion. Palladacycle 22 represents the first diinserted product obtained in alkyne insertion reactions of kappa(2)(C,N)Pd(Lewis base)X] type palladarycles. The molecular structure of 22 center dot H2O determined by X-ray diffraction indicates that the positive charge on the guanidinium moiety is balanced by the negative charge on the palladium atom and thus represents the first structurally characterized zwitterionic palladacycle to be reported in alkyne insertion chemistry. Plausible mechanisms of formation of 12-21 and 22 have been outlined. The presence of more than one species in solution for some of the palladacycles in the series 1-7 and 12-21 was explained by invoking the C-N single-bond rotation of the CN3 unit of the guanidine moiety, while this process in conjunction with Pd-N(lutidine) bond rotation was invoked to explain the presence of four isomers of 15, as studied with the aid of variable-concentration H-1 NMR experiments carried out for 14 and 15.