947 resultados para site-directed mutagenesis
Resumo:
CD33 is a myeloid cell surface marker absent on normal hematopoietic stem cells and normal tissues but present on leukemic blasts in 90% of adult and paediatric acute myeloid leukaemia (AML) cases. By virtue of its expression pattern and its ability to be rapidly internalized after antibody binding, CD33 has become an attractive target for new immunotherapeutic approaches to treat AML. In this study two immunoconjugates were constructed to contain a humanised single-chain fragment variable antibody (scFv) against CD33 in order to create new antibody-derived therapeutics for AML. The first immunoconjugate was developed to provide targeted delivery of siRNAs as death effectors into leukemic cells. To this purpose, a CD33-specific scFv, modified to include a Cys residue at its C-terminal end (scFvCD33-Cys), was coupled through a disulphide bridge to a nona-d-arginine (9R) peptide carrying a free Cys to the N-terminal. The scFvCD33-9R was able to completely bind siRNAs at a protein to nucleic acid ratio of about 10:1, as confirmed by electrophoretic gel mobility-shift assay. The conjugate was unable to efficiently transduce cytotoxic siRNA (siTox) into the human myeloid cell line U937. We observed slight reductions in cell viability, with a reduction of 25% in comparison to the control group only at high concentration of siTox (300 nM). The second immunoconjugate was constructed by coupling the scFvCD33-Cys to the type 1 ribosome inactivating protein Dianthin 30 (DIA30) through a chemical linking The resulting immunotoxin scFvCD33-DIA30 caused the rapid arrest of protein synthesis, inducing apoptosis and leading ultimately to cell death. In vitro dose-dependent cytotoxicity assays demonstrated that scFvCD33-DIA30 was specifically toxic to CD33-positive cell U937. The concentration needed to reach 50 % of maximum killing efficiency (EC50) was approximately 0.3 nM. The pronounced antigen-restricted cytotoxicity of this novel agent makes it a candidate for further evaluation of its therapeutic potential.
Resumo:
Die räumliche und zeitliche Organisation von Genexpression ist für die Entwicklung und das Funktionieren eines jeden Lebewesens von immenser Bedeutung. Dazu laufen eine Vielzahl von Regulationsprozessen auf unterschiedlichen Ebenen ab. In dieser Arbeit wurden im ersten Teil Untersuchungen zur Genregulation des Drosophila optomotor-blind Genes und zur Funktion des Omb Proteins durchgeführt. Eine Mutante, der ein großer Teil der upstream regulatory region (URR) fehlt wurde erzeugt, aus einer Vielzahl von Linien isoliert und molekular charakterisiert. Die biologischen Auswirkungen dieser Deletion werden in Shen et al. (2008) beschrieben. Plasmide zur Erzeugung transgener Fliegen, mit deren Hilfe eine bereits von Sivasankaran et al. (2000) durchgeführte Enhancer-reporter-Analyse vervollständigt werden sollte, wurden hergestellt. Die bereits bekannte Inversion In(1)ombH31 wurde molekular kartiert. Eine Reihe von Konstrukten mit Punktmutationen in der Omb T-Domäne wurden generiert, die unter anderem über deren Funktion hinsichtlich DNA-Protein Interaktion und einer potentiellen Metallionenbindefähigkeit (ATCUN) hin Aufschluss geben sollen. Des Weiteren wurde eine Reihe von P-Element-Deletionslinien auf den Verlust eines alternativen omb Transkriptionsstartpunktes hin untersucht, mit dem Ziel eine vollständige Protein-Nullmutante zur Verfügung zu haben. Der zweite Abschnitt dieser Arbeit befasste sich mit der Erzeugung von Dpp-GFP-Fusionskonstrukten, mit deren Hilfe weitere Erkenntnisse über den Dpp-Langstreckentransport erhofft werden. Es wurde außerdem damit begonnen bei einem weitern Drosophila T-Box Transkriptionsfaktor, Optomotor-blind related gene-1 (Org-1), eine Reihe von Varianten mit homopolymeren polyAlanin und polyGlutamin Expansionen unterschiedlicher Länge herzustellen. Durch Experimente mit diesen Konstrukten soll Aufschluss darüber gewonnen werden, ob Glutamin-Expansionen, wie in der Literatur vorgeschlagen, aktivierend und Alanin-Expansionen in Transkriptionsfaktoren vielleicht reprimierend auf Genaktivität wirken. Letztlich wurden in dieser Arbeit im Rahmen des DROSDEL Projektes (Ryder et al., 2004, 2007) Deletionen in der distalen Hälfte des Chromosomenarms 3R hergestellt. Der DROSDEL Deletionskit, der durch eine Kooperation europäischer Labore entstand stellt der Drosophila Forschung einen umfassenden Satz molekular basengenau definierter Defizienzen zur Verfügung.
Resumo:
In der vorliegenden Arbeit wurden die bioinformatischen Methoden der Homologie-Modellierung und Molekularen Modellierung dazu benutzt, die dreidimensionalen Strukturen verschiedenster Proteine vorherzusagen und zu analysieren. Experimentelle Befunde aus Laborversuchen wurden dazu benutzt, die Genauigkeit der Homologie-Modelle zu erhöhen. Die Ergebnisse aus den Modellierungen wurden wiederum dazu benutzt, um neue experimentelle Versuche vorzuschlagen. Anhand der erstellten Modelle und bekannten Kristallstrukturen aus der Protein-Datenbank PDB wurde die Struktur-Funktionsbeziehung verschiedener Tyrosinasen untersucht. Dazu gehörten sowohl die Tyrosinase des Bakteriums Streptomyces als auch die Tyrosinase der Hausmaus. Aus den vergleichenden Strukturanalysen der Tyrosinasen resultierten Mechanismen für die Monophenolhydroxylase-Aktivität der Tyrosinasen sowie für den Import der Kupferionen ins aktive Zentrum. Es konnte der Beweis geführt werden, daß die Blockade des CuA-Zentrums tatsächlich der Grund für die unterschiedliche Aktivität von Tyrosinasen und Catecholoxidasen ist. Zum ersten Mal konnte mit der Maus-Tyrosinase ein vollständiges Strukturmodell einer Säugetier-Tyrosinase erstellt werden, das dazu in der Lage ist, die Mechanismen bekannter Albino-Mutationen auf molekularer Ebene zu erklären. Die auf der Basis des ermittelten 3D-Modells gewonnenen Erkenntnisse über die Wichtigkeit bestimmter Aminosäuren für die Funktion wurde durch gerichtete Mutagenese an der rekombinant hergestellten Maus-Tyrosinase getestet und bestätigt. Weiterhin wurde die Struktur der Tyrosinase des Krebses Palinurus elephas durch eine niedrigaufgelöste 3D-Rekonstruktion aus elektronenmikroskopischen Bildern aufgeklärt. Der zweite große Themenkomplex umfasst die Strukturanalyse der Lichtsammlerkomplexe LHCI-730 und LHCII. Im Falle des LHCII konnte der Oligomerisierungszustand der LHCMoleküle mit diskreten Konformationen des N-Terminus korreliert werden. Auch hier kam eine Kombination von Homologie-Modellierung und einer experimentellen Methode, der Elektronen-Spin-Resonanz-Messung, zum Einsatz. Die Änderung des Oligomerisierungszustands des LHCII kontrolliert den Energiezufluß zu den Photosystemen PS I und PS II. Des Weiteren wurde ein vollständiges Modell des LHCI-730 erstellt, um die Auswirkungen gerichteter Mutagenese auf das Dimerisierungsverhalten zu untersuchen. Auf Basis dieses Modells wurden die Wechselwirkungen zwischen den Monomeren Lhca1 und Lhca4 evaluiert und potentielle Bindungspartner identifiziert.
Resumo:
The aim of this thesis was to synthesize multipotent drugs for the treatment of Alzheimer’s disease (AD) and for benign prostatic hyperplasia (BPH), two diseases that affect the elderly. AD is a neurodegenerative disorder that is characterized, among other factors, by loss of cholinergic neurons. Selective activation of M1 receptors through an allosteric site could restore the cholinergic hypofunction, improving the cognition in AD patients. We describe here the discovery and SAR of a novel series of quinone derivatives. Among them, 1 was the most interesting, being a high M1 selective positive allosteric modulator. At 100 nM, 1 triplicated the production of cAMP induced by oxotremorine. Moreover, it inhibited AChE and it displayed antioxidant properties. Site-directed mutagenesis experiments indicated that 1 acts at an allosteric site involving residue F77. Thus, 1 is a promising drug because the M1 activation may offer disease-modifying properties that could address and reduce most of AD hallmarks. BPH is an enlargement of the prostate caused by increased cellular growth. Blockade of α1-ARs is the predominant form of medical therapy for the treatment of the symptoms associated with BPH. α1-ARs are classified into three subtypes. The α1A- and α1D-AR subtypes are predominant in the prostate, while α1B-ARs regulate the blood pressure. Herein, we report the synthesis of quinazoline-derivatives obtained replacing the piperazine ring of doxazosin and prazosin with (S)- or (R)-3-aminopiperidine. The presence of a chiral center in the 3-C position of the piperidine ring allowed us to exploit the importance of stereochemistry in the binding at α1-ARs. It turned out that the S configuration at the 3-C position of the piperidine increases the affinity of the compounds at all three α1-AR subtypes, whereas the configuration at the benzodioxole ring of doxazosin derivatives is not critical for the interaction with α1-ARs.
The C-4-Dicarboxylate carriers DcuB and DctA of Escherichia coli: function as cosensors and topology
Resumo:
Das fakultativ anaerobe Enterobakterium Escherichia coli nutzt C4-Dicarboxylate sowohl unter aeroben als auch anaeroben Bedingungen als Kohlenstoff- und Energiequelle. Die Aufnahme der C4-Dicarboxylaten und die Energiekonservierung mittels Fumaratatmung wird durch das Zweikomponentensystem DcuSR reguliert. Die Sensorhistidinkinase DcuS und der nachgeschaltete Responseregulator DcuR aktivieren bei Verfügbarkeit von C4-Dicarboxylaten die Expression der Gene für den Succinat Transporter DctA, den anaeroben Fumarat/Succinat Antiporter DcuB, die Fumarase B sowie die Fumaratreduktase FrdABCD. Die Transportproteine DctA und DcuB wiederum regulieren die Expression der DcuSR-abhängigen Gene negativ. Fehlen von DctA oder DcuB resultiert bereits ohne Effektor in einer maximalen Expression von dctA bzw. dcuB. Durch gerichtete und ungerichtete Mutagenese wurde gezeigt, dass die Transportfunktion des Carriers DcuB unabhängig von seiner regulatorischen Funktion ist. DcuB kann daher als Cosensor des DcuSR Systems angesehen werden.rnUnter Verwendung von Reportergenfusionen von C-terminal verkürzten Konstrukten von DcuB mit der Alkalischen Phosphatase und der β-Galactosidase wurde die Topologie des Multitransmembranproteins DcuB bestimmt. Zusätzlich wurde die Zugänglichkeit bestimmter Aminosäurereste durch chemische Modifikation mit membran-durchlässigen und membran-undurchlässigen Thiolreagenzien untersucht. Die erhaltenen Ergebnisse deuten auf die Existenz eines tief in die Membran reichenden, hydrophilen Kanal hin, welcher zum Periplasma hin geöffnet ist. Mit Hilfe der Topologie-Studien, des Hydropathie-Blots und der Sekundärstruktur-Vorhersage wurde ein Modell des Carriers erstellt. DcuB besitzt kurze, periplasmatisch liegende Proteinenden, die durch 12 Transmembranhelices und zwei große hydrophile Schleifen jeweils zwischen TM VII/VIII und TM XI/XII verbunden sind. Die regulatorisch relevanten Reste K353, T396 und D398 befinden sich innerhalb von TM XI sowie auf der angrenzenden cytoplasmatischen Schleife XI-XII. Unter Berücksichtigung der strukturellen und funktionellen Aspekte wurde ein Regulationsmodell erstellt, welches die gemeinsam durch DcuB und DcuS kontrollierte C4-Dicarboxylat-abhängige Genexpression darstellt. rnDer Effekt von DctA und DcuSR auf die Expression einer dctA´-´lacZ Reportergenfusion und auf die aerobe C4-Dicarboxylat-Aufnahme wurde untersucht. In-vivo FRET-Messungen weisen auf eine direkte Wechselwirkung zwischen dem Carrier DctA und dem Sensor DcuS hin. Dieses Ergebnis stützt die Theorie der Regulation von DcuS durch C4-Dicarboxylate und durch die Cosensoren DctA bzw. DcuB mittels direkter Protein-Protein Interaktion.rn
Resumo:
Die lösliche Epoxidhydrolase (sEH) gehört zur Familie der Epoxidhydrolase-Enzyme. Die Rolle der sEH besteht klassischerweise in der Detoxifikation, durch Umwandlung potenziell schädlicher Epoxide in deren unschädliche Diol-Form. Hauptsächlich setzt die sEH endogene, der Arachidonsäure verwandte Signalmoleküle, wie beispielsweise die Epoxyeicosatrienoic acid, zu den entsprechenden Diolen um. Daher könnte die sEH als ein Zielenzym in der Therapie von Bluthochdruck und Entzündungen sowie diverser anderer Erkrankungen eingesetzt werden. rnDie sEH ist ein Homodimer, in dem jede Untereinheit aus zwei Domänen aufgebaut ist. Das katalytische Zentrum der Epoxidhydrolaseaktivität befindet sich in der 35 kD großen C-terminalen Domäne. Dieser Bereich der sEH s wurde bereits im Detail untersucht und nahezu alle katalytischen Eigenschaften des Enzyms sowie deren dazugehörige Funktionen sind in Zusammenhang mit dieser Domäne bekannt. Im Gegensatz dazu ist über die 25 kD große N-terminale Domäne wenig bekannt. Die N-terminale Domäne der sEH wird zur Haloacid Dehalogenase (HAD) Superfamilie von Hydrolasen gezählt, jedoch war die Funktion dieses N-terminal Domäne lange ungeklärt. Wir haben in unserer Arbeitsgruppe zum ersten Mal zeigen können, dass die sEH in Säugern ein bifunktionelles Enzym ist, welches zusätzlich zur allgemein bekannten Enzymaktivität im C-terminalen Bereich eine weitere enzymatische Funktion mit Mg2+-abhängiger Phosphataseaktivität in der N-terminalen Domäne aufweist. Aufgrund der Homologie der N-terminalen Domäne mit anderen Enzymen der HAD Familie wird für die Ausübung der Phosphatasefunktion (Dephosphorylierung) eine Reaktion in zwei Schritten angenommen.rnUm den katalytischen Mechanismus der Dephosphorylierung weiter aufzuklären, wurden biochemische Analysen der humanen sEH Phosphatase durch Generierung von Mutationen im aktiven Zentrum mittels ortsspezifischer Mutagenese durchgeführt. Hiermit sollten die an der katalytischen Aktivität beteiligten Aminosäurereste im aktiven Zentrum identifiziert und deren Rolle bei der Dephosphorylierung spezifiziert werden. rnrnAuf Basis der strukturellen und möglichen funktionellen Ähnlichkeiten der sEH und anderen Mitgliedern der HAD Superfamilie wurden Aminosäuren (konservierte und teilweise konservierte Aminosäuren) im aktiven Zentrum der sEH Phosphatase-Domäne als Kandidaten ausgewählt.rnVon den Phosphatase-Domäne bildenden Aminosäuren wurden acht ausgewählt (Asp9 (D9), Asp11 (D11), Thr123 (T123), Asn124 (N124), Lys160 (K160), Asp184 (D184), Asp185 (D185), Asn189 (N189)), die mittels ortsspezifischer Mutagenese durch nicht funktionelle Aminosäuren ausgetauscht werden sollten. Dazu wurde jede der ausgewählten Aminosäuren durch mindestens zwei alternative Aminosäuren ersetzt: entweder durch Alanin oder durch eine Aminosäure ähnlich der im Wildtyp-Enzym. Insgesamt wurden 18 verschiedene rekombinante Klone generiert, die für eine mutante sEH Phosphatase Domäne kodieren, in dem lediglich eine Aminosäure gegenüber dem Wildtyp-Enzym ersetzt wurde. Die 18 Mutanten sowie das Wildtyp (Sequenz der N-terminalen Domäne ohne Mutation) wurden in einem Expressionsvektor in E.coli kloniert und die Nukleotidsequenz durch Restriktionsverdau sowie Sequenzierung bestätigt. Die so generierte N-terminale Domäne der sEH (25kD Untereinheit) wurde dann mittels Metallaffinitätschromatographie erfolgreich aufgereinigt und auf Phosphataseaktivität gegenüber des allgemeinen Substrats 4-Nitophenylphosphat getestet. Diejenigen Mutanten, die Phosphataseaktivität zeigten, wurden anschließend kinetischen Tests unterzogen. Basiered auf den Ergebnissen dieser Untersuchungen wurden kinetische Parameter mittels vier gut etablierter Methoden berechnet und die Ergebnisse mit der „direct linear blot“ Methode interpretiert. rnDie Ergebnisse zeigten, dass die meisten der 18 generierten Mutanten inaktiv waren oder einen Großteil der Enzymaktivität (Vmax) gegenüber dem Wildtyp verloren (WT: Vmax=77.34 nmol-1 mg-1 min). Dieser Verlust an Enzymaktivität ließ sich nicht durch einen Verlust an struktureller Integrität erklären, da der Wildtyp und die mutanten Proteine in der Chromatographie das gleiche Verhalten zeigten. Alle Aminosäureaustausche Asp9 (D9), Lys160 (K160), Asp184 (D184) und Asn189 (N189) führten zum kompletten Verlust der Phosphataseaktivität, was auf deren katalytische Funktion im N-terminalen Bereich der sEH hindeutet. Bei einem Teil der Aminosäureaustausche die für Asp11 (D11), Thr123 (T123), Asn124 (N124) und Asn185 (D185) durchgeführt wurden, kam es, verglichen mit dem Wildtyp, zu einer starken Reduktion der Phosphataseaktivität, die aber dennoch für die einzelnen Proteinmutanten in unterschiedlichem Ausmaß zu messen war (2 -10% and 40% of the WT enzyme activity). Zudem zeigten die Mutanten dieser Gruppe veränderte kinetische Eigenschaften (Vmax allein oder Vmax und Km). Dabei war die kinetische Analyse des Mutanten Asp11 Asn aufgrund der nur bei dieser Mutanten detektierbaren starken Vmax Reduktion (8.1 nmol-1 mg-1 min) und einer signifikanten Reduktion der Km (Asp11: Km=0.54 mM, WT: Km=1.3 mM), von besonderem Interesse und impliziert eine Rolle von Asp11 (D11) im zweiten Schritt der Hydrolyse des katalytischen Zyklus.rnZusammenfassend zeigen die Ergebnisse, dass alle in dieser Arbeit untersuchten Aminosäuren für die Phosphataseaktivität der sEH nötig sind und das aktive Zentrum der sEH Phosphatase im N-terminalen Bereich des Enzyms bilden. Weiterhin tragen diese Ergebnisse zur Aufklärung der potenziellen Rolle der untersuchten Aminosäuren bei und unterstützen die Hypothese, dass die Dephosphorylierungsreaktion in zwei Schritten abläuft. Somit ist ein kombinierter Reaktionsmechanismus, ähnlich denen anderer Enzyme der HAD Familie, für die Ausübung der Dephosphorylierungsfunktion denkbar. Diese Annahme wird gestützt durch die 3D-Struktur der N-terminalen Domäne, den Ergebnissen dieser Arbeit sowie Resultaten weiterer biochemischer Analysen. Der zweistufige Mechanismus der Dephosphorylierung beinhaltet einen nukleophilen Angriff des Substratphosphors durch das Nukleophil Asp9 (D9) des aktiven Zentrums unter Bildung eines Acylphosphat-Enzym-Zwischenprodukts, gefolgt von der anschließenden Freisetzung des dephosphorylierten Substrats. Im zweiten Schritt erfolgt die Hydrolyse des Enzym-Phosphat-Zwischenprodukts unterstützt durch Asp11 (D11), und die Freisetzung der Phosphatgruppe findet statt. Die anderen untersuchten Aminosäuren sind an der Bindung von Mg 2+ und/oder Substrat beteiligt. rnMit Hilfe dieser Arbeit konnte der katalytischen Mechanismus der sEH Phosphatase weiter aufgeklärt werden und wichtige noch zu untersuchende Fragestellungen, wie die physiologische Rolle der sEH Phosphatase, deren endogene physiologische Substrate und der genaue Funktionsmechanismus als bifunktionelles Enzym (die Kommunikation der zwei katalytischen Einheiten des Enzyms) wurden aufgezeigt und diskutiert.rn
Resumo:
Staphylococcus carnosus ist ein fakultativ anaerobes Bakterium, das aerobe Atmung, anaerobe Nitratatmung und Gärungsstoffwechsel betreiben kann. Die Expression des Nitratstoffwechsels wird durch das Dreikomponentensystem NreABC reguliert.rnUnter anaeroben Bedingungen besitzt die Sensorhistidinkinase NreB in ihrer PAS-Domäne ein [Fe4S4]2+-Cluster. Das aktive (anaerobe) [Fe4S4]2+-NreB überträgt nach Autophosphorylierung die Phosphorylgruppe auf den Antwortregulator NreC, welcher dann die Expression der Gene der Nitratatmung aktiviert. Nitrat wirkt mit Hilfe des NreA-Proteins auf diese Gene induzierend. Im Rahmen der vorliegenden Arbeit wurde gezeigt, dass NreA ein GAF-Domänen-Protein und ein neuartiger Nitratrezeptor ist.rnDie Natur von NreA als GAF-Domänen-Protein bestätigte sich beim Vergleich der Kristallstruktur mit denen anderer GAF-Domänen. GAF-Domänen sind weit verbreitet und binden typischer Weise kleine Moleküle. Als physiologischer Ligand von NreA zeigte sich Nitrat, das innerhalb einer definierten Bindetasche gebunden wird. NreA bindet vermutlich in dimerer Form an dimeres NreB und inhibiert dadurch die Phosphorylierung der Sensorhistidinkinase NreB. Die Interaktion von NreA mit NreB wurde in vivo durch BACTH-Messungen und sowohl in vivo als auch in vitro durch Cross-Linking Experimente gezeigt. Nitrat reduziert den Ergebnissen nach die Interaktion von NreA mit NreB.rnDurch Sequenzvergleiche von NreA mit Homologen wurden konservierte Aminosäuren identifiziert. Über gerichtete Mutagenese wurden 25 NreA-Varianten hergestellt und bezüglich ihres Verhaltens in Abhängigkeit von Nitrat in narG-lip-Reportergenstudien getestet. Anhand ihres Phänotyps wurden sie als Wildtyp, NreA- und NreABC-Mutanten klassifiziert. Die Nitratbindetasche war in sechs Fällen betroffen. Die Phänotypen der Mutationen in der Peripherie lassen sich mit Auswirkungen auf die vermutete Konformationsänderung oder auf die Interaktion mit NreB erklären. Mutationen von konservierten, oberflächenexponierten Resten führten vermehrt zu NreA/ON-Varianten. Es ließen sich Bereiche auf der Proteinoberfläche identifizieren, die für NreA/NreA- oder NreA/NreB-Interaktionen wichtig sein könnten.rnDie Untersuchungen zeigten, dass NreA mit NreB interagiert und dass dadurch ein NreA/NreB-Sensorkomplex für die gemeinsame Erkennung von Nitrat und Sauerstoff gebildet wird.
Resumo:
Previous work has shown that the -tocopherol transfer protein ( -TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which -TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of -TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of -TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired -TTP-assisted secretion of -tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.
Resumo:
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.
Resumo:
Soybean lipoxygenase-1 (SBLO-1) catalyzes the oxygenation of polyunsaturated fatty acids into conjugated diene hydroperoxides. The three dimensional structure of SBLO-1 is known, but it is not certain how substrates bind. One hypothesis involves the transient separation of helix-2 and helix-11 located on the exterior of the molecule in front of the active site iron. A second hypothesis involves a conformational change in the side chains of residues leucine 541 and threonine 259. To test these hypotheses, site directed mutagenesis was used to create a cysteine mutation on each helix, which could allow for the formation of a disulfide linkage. Disulfide formation between the two cysteines in the T259C,S545C mutant was found to be unfavorable, but later shown to be present at higher pH values using SDS-PAGE. Treatment of the T259C,S545C with the crosslinker 2,3-dibromomaleimide (DBM) resulted in a 50% reduction in catalytic activity. No loss of activity was observed when the single mutant, S545C, or the wild type was treated with DBM. Single mutants T259C and L541C both showed approximately 20% reduction in the rate after addition of DBM. Double mutants T259C,L541C and S263C,S545C showed approximately 30% reduction in the rate after addition of DBM. Single mutants T259C and L541C showed an increase in activity after incubation with NEM. Double mutants T259C,S545C and T259C,L541C showed an increase in activity after incubation with NEM. The S263C,S545C double mutant showed a slight decrease in activity in the presence of NEM. It is unclear how the NEM and DBM are interacting with the molecule, but this can easily be determined through mass spectrometry experiments.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.
Resumo:
Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.
Resumo:
P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.