939 resultados para shearing interference
Resumo:
We demonstrate a type of 2 x 2 multimode interference 3 dB coupler based on silicon-on-insulator. The fabrication tolerance was investigated by the effective index method and the guide mode method. The devices with different lengths were fabricated and near-held output images were obtained. Tolerances to width, length and etch depth are 2, 200 and 2 mum, respectively. The devices show a uniform power distribution.
Resumo:
The authors demonstrate a 3dB 2 x 2 parabolically tapered multimode interference (MMT) coupler with a large cross-section and space between the different ports using silicon-on-insulator technology. The device exhibits a uniformity of < 0.8dB and can be used in the realisation of an MMI-based optical switch with a high extinction ratio.
Interference effects in differential reflectance spectra of the GaAs epilayers grown on Si substrate
Resumo:
We report the observation of oscillating features in differential reflectance spectra from the GaAs epilayer grown on Si substrate in the energy range both below and above the fundamental band gap. It is demonstrated that the oscillating features are due to the difference in the interference between two neighboring areas of the sample. The interference arises from two light beams reflected from different interfaces of the sample. The calculated spectra in the nonabsorption region are in good agreement with measured data. It is shown that the interference effect can be used as a sensitive method to characterize the inhomogeneity of the semiconductor heterostructures. (C) 1998 American Institute of Physics. [S0021-8979(98)08723-4].
Resumo:
During the packaging of optoelectrome device, a problem always met is the instability of output power. The main effect causing this problem, Fabry-Perot interference, is discussed in this paper. Both theoretical analysis and experimental test are carried out and in good agreement. As an example of avoiding the disadvantage of Fabry-Perot interference, the packaging process of Silicon-on-Insulator (SOI) based Variable Optical Attenuator(VOA) is shown at last.
Resumo:
A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.
Resumo:
A method for producing optical structures using rotationally symmetric pyramids is proposed. Two-dimensional structures can be achieved using acute prisms. They form by multi-beam interference of plane waves that impinge from directions distributed symmetrically around the axis of rotational symmetry. Flat-topped pyramids provide an additional beam along the axis thus generating three-dimensional structures. Experimental results are consistent with the results of numerical simulations. The advantages of the method are simplicity of operation, low cost, ease of integration, good stability, and high transmittance. Possible applications are the fabrication of photonic micro-structures such as photonic crystals or array waveguides as well as multi-beam optical tweezers. (c) 2006 Optical Society of America.
Resumo:
The mechanism of beam splitting and principle of wide-field-of-view compensation of modified Savart polariscope in the wide-field-of-view polarization interference imaging spectrometer (WPIIS) are analyzed and discussed. Formulas for the lateral displacement and optical path difference (OPD) produced by the modified Savart polariscope are derived by ray-tracing method. The theoretical and practical guidance is thereby provided for the study, design, modulation, experiment and engineering of the polarization interference imaging spectrometers and other birefringent Fourier-transform spectrometers based on Savart polariscopes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of the orientations of both polarizer and analyzer on modulation depth of spatially distributed interferograms for static polarization interference imaging spectrometer (SPIIS) is analyzed. A generally, theoretical relationship to determine the modulation depth of a SPIIS is derived. The special cases of maximum modulation depth (V = 1) and the minimum modulation depth (V = 0) are examined. Our results will provide a theoretical and practical guide for studying, developing and engineering polarization interference imaging spectrometers. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Effect of surface structures upon ultrathin film interference fringes generated from extremely thin films or epitaxial layers grown on semiconductor wafers has been studied. Since dark regions of fringes correspond to the places where the thin films are destroyed or absent, the fringes are investigated to detect uneven surfaces with undesired structures. Therefore, surface microstructures can be detected and characterized effectively by the modification of the fringes.
Resumo:
Quantum interference properties of GaAs/AlGaAs symmetric double quantum wells were investigated in a magnetic field parallel to heterointerfaces at 1.9 K. For two types of samples used in our experiments, two GaAs quantum wells with the same width of 60 Angstrom are separated by an AlGaAs barrier layer of 120 Angstrom and 20 degrees thick, respectively. The channels with the length of 2 mu m are defined by alloyed ohmic contacts. The conductance oscillation as a function of the magnetic flux Phi(= B/s) was observed and oscillation period is approximately equal to h/e. The results are in agreement with the theoretical expectation of the Aharonov-Bohm effect. Conductance oscillations are apparent slightly in the samples with a thinner AlGaAs barrier.
Resumo:
A silicon-on-insulator based channel-shifted multimode interference coupler is designed and fabricated. A two dimensional beam propagation method is used to analyze the dependence of coupler′s performances on the width and length of the multimode waveguide. The device fabricated has a power shift ratio of 73 and an excess loss of about 2.2 dB. An enhancement of fabrication accuracies could further improve the coupler performances.
Resumo:
A novel structure of MMI coupler with different background refractive index has been designed. With stronger optical confinement in multimode waveguides, more guided modes are excited to improve imaging quality. Two-dimensional finite difference beam propagation method (2-D FDBPM) was used to simulate this new structure and had proven that its imaging quality, in terms of power uniformity and excess loss, is much better than conventional structure. This structure can be applied in SOI rib waveguides by deep etching method.
Resumo:
The temperature dependence of characteristics for multimode interference (MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For restricted interference 3-dB MMI coupler, the output power uniformity is ideally 0 at room temperature and becomes 0. 32 dB when temperature rises up to 550 K. For symmetric interference 3-dB MMI coupler, the power uniformity keeps ideally 0 due to its intrinsic symmetric interference mechanism. With the temperature rising, the excess loss of the both devices increases. The performance deterioration due to temperature variety is more obvious to restricted interference MMI 3-dB coupler, comparing with that of symmetric interference MMI 3-dB coupler.