945 resultados para second order calibration uncertainty
Resumo:
This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=partial derivative F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification.
Resumo:
A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.
Resumo:
In this work we study a Hořava-like 5-dimensional model in the context of braneworld theory. The equations of motion of such model are obtained and, within the realm of warped geometry, we show that the model is consistent if and only if λ takes its relativistic value 1. Furthermore, we show that the elimination of problematic terms involving the warp factor second order derivatives are eliminated by imposing detailed balance condition in the bulk. Afterwards, Israel's junction conditions are computed, allowing the attainment of an effective Lagrangian in the visible brane. In particular, we show that the resultant effective Lagrangian in the brane corresponds to a (3 + 1)-dimensional Hořava-like model with an emergent positive cosmological constant but without detailed balance condition. Now, restoration of detailed balance condition, at this time imposed over the brane, plays an interesting role by fitting accordingly the sign of the arbitrary constant β, insuring a positive brane tension and a real energy for the graviton within its dispersion relation. Also, the brane consistency equations are obtained and, as a result, the model admits positive brane tensions in the compactification scheme if, and only if, β is negative and the detailed balance condition is imposed. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
Classical procedures for model updating in non-linear mechanical systems based on vibration data can fail because the common linear metrics are not sensitive for non-linear behavior caused by gaps, backlash, bolts, joints, materials, etc. Several strategies were proposed in the literature in order to allow a correct representative model of non-linear structures. The present paper evaluates the performance of two approaches based on different objective functions. The first one is a time domain methodology based on the proper orthogonal decomposition constructed from the output time histories. The second approach uses objective functions with multiples convolutions described by the first and second order discrete-time Volterra kernels. In order to discuss the results, a benchmark of a clamped-clamped beam with an pre-applied static load is simulated and updated using proper orthogonal decomposition and Volterra Series. The comparisons and discussions of the results show the practical applicability and drawbacks of both approaches.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.
Resumo:
The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique's foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of electrocardiographic tracks with minimum-complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption; in this context, we show how a random matrix generation strategy with a controlled amount of perturbations can be used to distinguish between multiple user classes with different quality of access to the encrypted information content. Finally, we explore the application of compressed sensing in the design of a multispectral imager, by implementing an optical scheme that entails a coded aperture array and Fabry-Pérot spectral filters. The signal recoveries obtained by processing real-world measurements show promising results, that leave room for an improvement of the sensing matrix calibration problem in the devised imager.
Resumo:
In dieser Arbeit wird der Entwurf, der Aufbau, die Inbetriebnahme und die Charakterisierung einer neuartigen Penning-Falle im Rahmen des Experiments zur Bestimmung des g-Faktors des Protons präsentiert. Diese Falle zeichnet sich dadurch aus, dass die Magnetfeldlinien eines äußeren homogenen Magnetfeldes durch eine ferromagnetische Ringelektrode im Zentrum der Falle verzerrt werden. Der inhomogene Anteil des resultierenden Magnetfeldes, die sogenannte magnetische Flasche, lässt sich durch den Koeffizient B2 = 297(10) mT/mm2 des Terms zweiter Ordnung der Ortsabhängigkeit des Feldes quantifizieren. Eine solche ungewöhnlich starke Feldinhomogenität ist Grundvoraussetzung für den Nachweis der Spinausrichtung des Protons mittels des kontinuierlichen Stern-Gerlach-Effektes. Dieser Effekt basiert auf der im inhomogenen Magnetfeld entstehenden Kopplung des Spin-Freiheitsgrades des gefangenen Protons an eine seiner Eigenfrequenzen. Ein Spin-Übergang lässt sich so über einen Frequenzsprung detektieren. Dabei ist die nachzuweisende Änderung der Frequenz proportional zu B2 und zum im Fall des Protons extrem kleinen Verhältnis zwischen seinem magnetischen Moment nund seiner Masse. Die durch die benötigte hohe Inhomogenität des Magnetfeldes bedingten technischen Herausforderungen erfordern eine fundierte Kenntnis und Kontrolle der Eigenschaften der Penning-Falle sowie der experimentellen Bedingungen. Die in der vorliegenden Arbeit entwickelte Penning-Falle ermöglichte den erstmaligen zerstörungsfreien Nachweis von Spin-Quantensprüngen eines einzelnen gefangenen Protons, was einen Durchbruch für das Experiment zur direkten Bestimmung des g-Faktors mit der angestrebten relativen Genauigkeit von 10−9 darstellte. Mithilfe eines statistischen Verfahrens ließen sich die Larmor- und die Zyklotronfrequenz des Protons im inhomogenen Magnetfeld der Falle ermitteln. Daraus wurde der g-Faktor mit einer relativen Genauigkeit von 8,9 × 10−6 bestimmt. Die hier vorgestellten Messverfahren und der experimentelle Aufbau können auf ein äquivalentes Experiment zur Bestimmung des g-Faktors des Antiprotons zum Erreichen der gleichen Messgenauigkeit übertragen werden, womit der erste Schritt auf dem Weg zu einem neuen zwingenden Test der CPT-Symmetrie im baryonischen Sektor gemacht wäre.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
A three-level satellite to ground monitoring scheme for conservation easement monitoring has been implemented in which high-resolution imagery serves as an intermediate step for inspecting high priority sites. A digital vertical aerial camera system was developed to fulfill the need for an economical source of imagery for this intermediate step. A method for attaching the camera system to small aircraft was designed, and the camera system was calibrated and tested. To ensure that the images obtained were of suitable quality for use in Level 2 inspections, rectified imagery was required to provide positional accuracy of 5 meters or less to be comparable to current commercially available high-resolution satellite imagery. Focal length calibration was performed to discover the infinity focal length at two lens settings (24mm and 35mm) with a precision of O.1mm. Known focal length is required for creation of navigation points representing locations to be photographed (waypoints). Photographing an object of known size at distances on a test range allowed estimates of focal lengths of 25.lmm and 35.4mm for the 24mm and 35mm lens settings, respectively. Constants required for distortion removal procedures were obtained using analytical plumb-line calibration procedures for both lens settings, with mild distortion at the 24mm setting and virtually no distortion found at the 35mm setting. The system was designed to operate in a series of stages: mission planning, mission execution, and post-mission processing. During mission planning, waypoints were created using custom tools in geographic information system (GIs) software. During mission execution, the camera is connected to a laptop computer with a global positioning system (GPS) receiver attached. Customized mobile GIs software accepts position information from the GPS receiver, provides information for navigation, and automatically triggers the camera upon reaching the desired location. Post-mission processing (rectification) of imagery for removal of lens distortion effects, correction of imagery for horizontal displacement due to terrain variations (relief displacement), and relating the images to ground coordinates were performed with no more than a second-order polynomial warping function. Accuracy testing was performed to verify the positional accuracy capabilities of the system in an ideal-case scenario as well as a real-world case. Using many welldistributed and highly accurate control points on flat terrain, the rectified images yielded median positional accuracy of 0.3 meters. Imagery captured over commercial forestland with varying terrain in eastern Maine, rectified to digital orthophoto quadrangles, yielded median positional accuracies of 2.3 meters with accuracies of 3.1 meters or better in 75 percent of measurements made. These accuracies were well within performance requirements. The images from the digital camera system are of high quality, displaying significant detail at common flying heights. At common flying heights the ground resolution of the camera system ranges between 0.07 meters and 0.67 meters per pixel, satisfying the requirement that imagery be of comparable resolution to current highresolution satellite imagery. Due to the high resolution of the imagery, the positional accuracy attainable, and the convenience with which it is operated, the digital aerial camera system developed is a potentially cost-effective solution for use in the intermediate step of a satellite to ground conservation easement monitoring scheme.
Resumo:
Los estudios realizados hasta el momento para la determinación de la calidad de medida del instrumental geodésico han estado dirigidos, fundamentalmente, a las medidas angulares y de distancias. Sin embargo, en los últimos años se ha impuesto la tendencia generalizada de utilizar equipos GNSS (Global Navigation Satellite System) en el campo de las aplicaciones geomáticas sin que se haya establecido una metodología que permita obtener la corrección de calibración y su incertidumbre para estos equipos. La finalidad de esta Tesis es establecer los requisitos que debe satisfacer una red para ser considerada Red Patrón con trazabilidad metrológica, así como la metodología para la verificación y calibración de instrumental GNSS en redes patrón. Para ello, se ha diseñado y elaborado un procedimiento técnico de calibración de equipos GNSS en el que se han definido las contribuciones a la incertidumbre de medida. El procedimiento, que se ha aplicado en diferentes redes para distintos equipos, ha permitido obtener la incertidumbre expandida de dichos equipos siguiendo las recomendaciones de la Guide to the Expression of Uncertainty in Measurement del Joint Committee for Guides in Metrology. Asimismo, se han determinado mediante técnicas de observación por satélite las coordenadas tridimensionales de las bases que conforman las redes consideradas en la investigación, y se han desarrollado simulaciones en función de diversos valores de las desviaciones típicas experimentales de los puntos fijos que se han utilizado en el ajuste mínimo cuadrático de los vectores o líneas base. Los resultados obtenidos han puesto de manifiesto la importancia que tiene el conocimiento de las desviaciones típicas experimentales en el cálculo de incertidumbres de las coordenadas tridimensionales de las bases. Basándose en estudios y observaciones de gran calidad técnica, llevados a cabo en estas redes con anterioridad, se ha realizado un exhaustivo análisis que ha permitido determinar las condiciones que debe satisfacer una red patrón. Además, se han diseñado procedimientos técnicos de calibración que permiten calcular la incertidumbre expandida de medida de los instrumentos geodésicos que proporcionan ángulos y distancias obtenidas por métodos electromagnéticos, ya que dichos instrumentos son los que van a permitir la diseminación de la trazabilidad metrológica a las redes patrón para la verificación y calibración de los equipos GNSS. De este modo, ha sido posible la determinación de las correcciones de calibración local de equipos GNSS de alta exactitud en las redes patrón. En esta Tesis se ha obtenido la incertidumbre de la corrección de calibración mediante dos metodologías diferentes; en la primera se ha aplicado la propagación de incertidumbres, mientras que en la segunda se ha aplicado el método de Monte Carlo de simulación de variables aleatorias. El análisis de los resultados obtenidos confirma la validez de ambas metodologías para la determinación de la incertidumbre de calibración de instrumental GNSS. ABSTRACT The studies carried out so far for the determination of the quality of measurement of geodetic instruments have been aimed, primarily, to measure angles and distances. However, in recent years it has been accepted to use GNSS (Global Navigation Satellite System) equipment in the field of Geomatic applications, for data capture, without establishing a methodology that allows obtaining the calibration correction and its uncertainty. The purpose of this Thesis is to establish the requirements that a network must meet to be considered a StandardNetwork with metrological traceability, as well as the methodology for the verification and calibration of GNSS instrumental in those standard networks. To do this, a technical calibration procedure has been designed, developed and defined for GNSS equipment determining the contributions to the uncertainty of measurement. The procedure, which has been applied in different networks for different equipment, has alloweddetermining the expanded uncertainty of such equipment following the recommendations of the Guide to the Expression of Uncertainty in Measurement of the Joint Committee for Guides in Metrology. In addition, the three-dimensional coordinates of the bases which constitute the networks considered in the investigationhave been determined by satellite-based techniques. There have been several developed simulations based on different values of experimental standard deviations of the fixed points that have been used in the least squares vectors or base lines calculations. The results have shown the importance that the knowledge of experimental standard deviations has in the calculation of uncertainties of the three-dimensional coordinates of the bases. Based on high technical quality studies and observations carried out in these networks previously, it has been possible to make an exhaustive analysis that has allowed determining the requirements that a standard network must meet. In addition, technical calibration procedures have been developed to allow the uncertainty estimation of measurement carried outby geodetic instruments that provide angles and distances obtained by electromagnetic methods. These instruments provide the metrological traceability to standard networks used for verification and calibration of GNSS equipment. As a result, it has been possible the estimation of local calibration corrections for high accuracy GNSS equipment in standardnetworks. In this Thesis, the uncertainty of calibration correction has been calculated using two different methodologies: the first one by applying the law of propagation of uncertainty, while the second has applied the propagation of distributions using the Monte Carlo method. The analysis of the obtained results confirms the validity of both methodologies for estimating the calibration uncertainty of GNSS equipment.
Resumo:
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)
Resumo:
The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied.The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction.Thecomparison with the experimental data indicates a nonuniformdistribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.
Resumo:
El análisis determinista de seguridad (DSA) es el procedimiento que sirve para diseñar sistemas, estructuras y componentes relacionados con la seguridad en las plantas nucleares. El DSA se basa en simulaciones computacionales de una serie de hipotéticos accidentes representativos de la instalación, llamados escenarios base de diseño (DBS). Los organismos reguladores señalan una serie de magnitudes de seguridad que deben calcularse en las simulaciones, y establecen unos criterios reguladores de aceptación (CRA), que son restricciones que deben cumplir los valores de esas magnitudes. Las metodologías para realizar los DSA pueden ser de 2 tipos: conservadoras o realistas. Las metodologías conservadoras utilizan modelos predictivos e hipótesis marcadamente pesimistas, y, por ello, relativamente simples. No necesitan incluir un análisis de incertidumbre de sus resultados. Las metodologías realistas se basan en hipótesis y modelos predictivos realistas, generalmente mecanicistas, y se suplementan con un análisis de incertidumbre de sus principales resultados. Se les denomina también metodologías BEPU (“Best Estimate Plus Uncertainty”). En ellas, la incertidumbre se representa, básicamente, de manera probabilista. Para metodologías conservadores, los CRA son, simplemente, restricciones sobre valores calculados de las magnitudes de seguridad, que deben quedar confinados en una “región de aceptación” de su recorrido. Para metodologías BEPU, el CRA no puede ser tan sencillo, porque las magnitudes de seguridad son ahora variables inciertas. En la tesis se desarrolla la manera de introducción de la incertidumbre en los CRA. Básicamente, se mantiene el confinamiento a la misma región de aceptación, establecida por el regulador. Pero no se exige el cumplimiento estricto sino un alto nivel de certidumbre. En el formalismo adoptado, se entiende por ello un “alto nivel de probabilidad”, y ésta corresponde a la incertidumbre de cálculo de las magnitudes de seguridad. Tal incertidumbre puede considerarse como originada en los inputs al modelo de cálculo, y propagada a través de dicho modelo. Los inputs inciertos incluyen las condiciones iniciales y de frontera al cálculo, y los parámetros empíricos de modelo, que se utilizan para incorporar la incertidumbre debida a la imperfección del modelo. Se exige, por tanto, el cumplimiento del CRA con una probabilidad no menor a un valor P0 cercano a 1 y definido por el regulador (nivel de probabilidad o cobertura). Sin embargo, la de cálculo de la magnitud no es la única incertidumbre existente. Aunque un modelo (sus ecuaciones básicas) se conozca a la perfección, la aplicación input-output que produce se conoce de manera imperfecta (salvo que el modelo sea muy simple). La incertidumbre debida la ignorancia sobre la acción del modelo se denomina epistémica; también se puede decir que es incertidumbre respecto a la propagación. La consecuencia es que la probabilidad de cumplimiento del CRA no se puede conocer a la perfección; es una magnitud incierta. Y así se justifica otro término usado aquí para esta incertidumbre epistémica: metaincertidumbre. Los CRA deben incorporar los dos tipos de incertidumbre: la de cálculo de la magnitud de seguridad (aquí llamada aleatoria) y la de cálculo de la probabilidad (llamada epistémica o metaincertidumbre). Ambas incertidumbres pueden introducirse de dos maneras: separadas o combinadas. En ambos casos, el CRA se convierte en un criterio probabilista. Si se separan incertidumbres, se utiliza una probabilidad de segundo orden; si se combinan, se utiliza una probabilidad única. Si se emplea la probabilidad de segundo orden, es necesario que el regulador imponga un segundo nivel de cumplimiento, referido a la incertidumbre epistémica. Se denomina nivel regulador de confianza, y debe ser un número cercano a 1. Al par formado por los dos niveles reguladores (de probabilidad y de confianza) se le llama nivel regulador de tolerancia. En la Tesis se razona que la mejor manera de construir el CRA BEPU es separando las incertidumbres, por dos motivos. Primero, los expertos defienden el tratamiento por separado de incertidumbre aleatoria y epistémica. Segundo, el CRA separado es (salvo en casos excepcionales) más conservador que el CRA combinado. El CRA BEPU no es otra cosa que una hipótesis sobre una distribución de probabilidad, y su comprobación se realiza de forma estadística. En la tesis, los métodos estadísticos para comprobar el CRA BEPU en 3 categorías, según estén basados en construcción de regiones de tolerancia, en estimaciones de cuantiles o en estimaciones de probabilidades (ya sea de cumplimiento, ya sea de excedencia de límites reguladores). Según denominación propuesta recientemente, las dos primeras categorías corresponden a los métodos Q, y la tercera, a los métodos P. El propósito de la clasificación no es hacer un inventario de los distintos métodos en cada categoría, que son muy numerosos y variados, sino de relacionar las distintas categorías y citar los métodos más utilizados y los mejor considerados desde el punto de vista regulador. Se hace mención especial del método más utilizado hasta el momento: el método no paramétrico de Wilks, junto con su extensión, hecha por Wald, al caso multidimensional. Se decribe su método P homólogo, el intervalo de Clopper-Pearson, típicamente ignorado en el ámbito BEPU. En este contexto, se menciona el problema del coste computacional del análisis de incertidumbre. Los métodos de Wilks, Wald y Clopper-Pearson requieren que la muestra aleatortia utilizada tenga un tamaño mínimo, tanto mayor cuanto mayor el nivel de tolerancia exigido. El tamaño de muestra es un indicador del coste computacional, porque cada elemento muestral es un valor de la magnitud de seguridad, que requiere un cálculo con modelos predictivos. Se hace especial énfasis en el coste computacional cuando la magnitud de seguridad es multidimensional; es decir, cuando el CRA es un criterio múltiple. Se demuestra que, cuando las distintas componentes de la magnitud se obtienen de un mismo cálculo, el carácter multidimensional no introduce ningún coste computacional adicional. Se prueba así la falsedad de una creencia habitual en el ámbito BEPU: que el problema multidimensional sólo es atacable desde la extensión de Wald, que tiene un coste de computación creciente con la dimensión del problema. En el caso (que se da a veces) en que cada componente de la magnitud se calcula independientemente de los demás, la influencia de la dimensión en el coste no se puede evitar. Las primeras metodologías BEPU hacían la propagación de incertidumbres a través de un modelo sustitutivo (metamodelo o emulador) del modelo predictivo o código. El objetivo del metamodelo no es su capacidad predictiva, muy inferior a la del modelo original, sino reemplazar a éste exclusivamente en la propagación de incertidumbres. Para ello, el metamodelo se debe construir con los parámetros de input que más contribuyan a la incertidumbre del resultado, y eso requiere un análisis de importancia o de sensibilidad previo. Por su simplicidad, el modelo sustitutivo apenas supone coste computacional, y puede estudiarse exhaustivamente, por ejemplo mediante muestras aleatorias. En consecuencia, la incertidumbre epistémica o metaincertidumbre desaparece, y el criterio BEPU para metamodelos se convierte en una probabilidad simple. En un resumen rápido, el regulador aceptará con más facilidad los métodos estadísticos que menos hipótesis necesiten; los exactos más que los aproximados; los no paramétricos más que los paramétricos, y los frecuentistas más que los bayesianos. El criterio BEPU se basa en una probabilidad de segundo orden. La probabilidad de que las magnitudes de seguridad estén en la región de aceptación no sólo puede asimilarse a una probabilidad de éxito o un grado de cumplimiento del CRA. También tiene una interpretación métrica: representa una distancia (dentro del recorrido de las magnitudes) desde la magnitud calculada hasta los límites reguladores de aceptación. Esta interpretación da pie a una definición que propone esta tesis: la de margen de seguridad probabilista. Dada una magnitud de seguridad escalar con un límite superior de aceptación, se define el margen de seguridad (MS) entre dos valores A y B de la misma como la probabilidad de que A sea menor que B, obtenida a partir de las incertidumbres de A y B. La definición probabilista de MS tiene varias ventajas: es adimensional, puede combinarse de acuerdo con las leyes de la probabilidad y es fácilmente generalizable a varias dimensiones. Además, no cumple la propiedad simétrica. El término margen de seguridad puede aplicarse a distintas situaciones: distancia de una magnitud calculada a un límite regulador (margen de licencia); distancia del valor real de la magnitud a su valor calculado (margen analítico); distancia desde un límite regulador hasta el valor umbral de daño a una barrera (margen de barrera). Esta idea de representar distancias (en el recorrido de magnitudes de seguridad) mediante probabilidades puede aplicarse al estudio del conservadurismo. El margen analítico puede interpretarse como el grado de conservadurismo (GC) de la metodología de cálculo. Utilizando la probabilidad, se puede cuantificar el conservadurismo de límites de tolerancia de una magnitud, y se pueden establecer indicadores de conservadurismo que sirvan para comparar diferentes métodos de construcción de límites y regiones de tolerancia. Un tópico que nunca se abordado de manera rigurosa es el de la validación de metodologías BEPU. Como cualquier otro instrumento de cálculo, una metodología, antes de poder aplicarse a análisis de licencia, tiene que validarse, mediante la comparación entre sus predicciones y valores reales de las magnitudes de seguridad. Tal comparación sólo puede hacerse en escenarios de accidente para los que existan valores medidos de las magnitudes de seguridad, y eso ocurre, básicamente en instalaciones experimentales. El objetivo último del establecimiento de los CRA consiste en verificar que se cumplen para los valores reales de las magnitudes de seguridad, y no sólo para sus valores calculados. En la tesis se demuestra que una condición suficiente para este objetivo último es la conjunción del cumplimiento de 2 criterios: el CRA BEPU de licencia y un criterio análogo, pero aplicado a validación. Y el criterio de validación debe demostrarse en escenarios experimentales y extrapolarse a plantas nucleares. El criterio de licencia exige un valor mínimo (P0) del margen probabilista de licencia; el criterio de validación exige un valor mínimo del margen analítico (el GC). Esos niveles mínimos son básicamente complementarios; cuanto mayor uno, menor el otro. La práctica reguladora actual impone un valor alto al margen de licencia, y eso supone que el GC exigido es pequeño. Adoptar valores menores para P0 supone menor exigencia sobre el cumplimiento del CRA, y, en cambio, más exigencia sobre el GC de la metodología. Y es importante destacar que cuanto mayor sea el valor mínimo del margen (de licencia o analítico) mayor es el coste computacional para demostrarlo. Así que los esfuerzos computacionales también son complementarios: si uno de los niveles es alto (lo que aumenta la exigencia en el cumplimiento del criterio) aumenta el coste computacional. Si se adopta un valor medio de P0, el GC exigido también es medio, con lo que la metodología no tiene que ser muy conservadora, y el coste computacional total (licencia más validación) puede optimizarse. ABSTRACT Deterministic Safety Analysis (DSA) is the procedure used in the design of safety-related systems, structures and components of nuclear power plants (NPPs). DSA is based on computational simulations of a set of hypothetical accidents of the plant, named Design Basis Scenarios (DBS). Nuclear regulatory authorities require the calculation of a set of safety magnitudes, and define the regulatory acceptance criteria (RAC) that must be fulfilled by them. Methodologies for performing DSA van be categorized as conservative or realistic. Conservative methodologies make use of pessimistic model and assumptions, and are relatively simple. They do not need an uncertainty analysis of their results. Realistic methodologies are based on realistic (usually mechanistic) predictive models and assumptions, and need to be supplemented with uncertainty analyses of their results. They are also termed BEPU (“Best Estimate Plus Uncertainty”) methodologies, and are typically based on a probabilistic representation of the uncertainty. For conservative methodologies, the RAC are simply the restriction of calculated values of safety magnitudes to “acceptance regions” defined on their range. For BEPU methodologies, the RAC cannot be so simple, because the safety magnitudes are now uncertain. In the present Thesis, the inclusion of uncertainty in RAC is studied. Basically, the restriction to the acceptance region must be fulfilled “with a high certainty level”. Specifically, a high probability of fulfillment is required. The calculation uncertainty of the magnitudes is considered as propagated from inputs through the predictive model. Uncertain inputs include model empirical parameters, which store the uncertainty due to the model imperfection. The fulfillment of the RAC is required with a probability not less than a value P0 close to 1 and defined by the regulator (probability or coverage level). Calculation uncertainty is not the only one involved. Even if a model (i.e. the basic equations) is perfectly known, the input-output mapping produced by the model is imperfectly known (unless the model is very simple). This ignorance is called epistemic uncertainty, and it is associated to the process of propagation). In fact, it is propagated to the probability of fulfilling the RAC. Another term used on the Thesis for this epistemic uncertainty is metauncertainty. The RAC must include the two types of uncertainty: one for the calculation of the magnitude (aleatory uncertainty); the other one, for the calculation of the probability (epistemic uncertainty). The two uncertainties can be taken into account in a separate fashion, or can be combined. In any case the RAC becomes a probabilistic criterion. If uncertainties are separated, a second-order probability is used; of both are combined, a single probability is used. On the first case, the regulator must define a level of fulfillment for the epistemic uncertainty, termed regulatory confidence level, as a value close to 1. The pair of regulatory levels (probability and confidence) is termed the regulatory tolerance level. The Thesis concludes that the adequate way of setting the BEPU RAC is by separating the uncertainties. There are two reasons to do so: experts recommend the separation of aleatory and epistemic uncertainty; and the separated RAC is in general more conservative than the joint RAC. The BEPU RAC is a hypothesis on a probability distribution, and must be statistically tested. The Thesis classifies the statistical methods to verify the RAC fulfillment in 3 categories: methods based on tolerance regions, in quantile estimators and on probability (of success or failure) estimators. The former two have been termed Q-methods, whereas those in the third category are termed P-methods. The purpose of our categorization is not to make an exhaustive survey of the very numerous existing methods. Rather, the goal is to relate the three categories and examine the most used methods from a regulatory standpoint. Special mention deserves the most used method, due to Wilks, and its extension to multidimensional variables (due to Wald). The counterpart P-method of Wilks’ is Clopper-Pearson interval, typically ignored in the BEPU realm. The problem of the computational cost of an uncertainty analysis is tackled. Wilks’, Wald’s and Clopper-Pearson methods require a minimum sample size, which is a growing function of the tolerance level. The sample size is an indicator of the computational cost, because each element of the sample must be calculated with the predictive models (codes). When the RAC is a multiple criteria, the safety magnitude becomes multidimensional. When all its components are output of the same calculation, the multidimensional character does not introduce additional computational cost. In this way, an extended idea in the BEPU realm, stating that the multi-D problem can only be tackled with the Wald extension, is proven to be false. When the components of the magnitude are independently calculated, the influence of the problem dimension on the cost cannot be avoided. The former BEPU methodologies performed the uncertainty propagation through a surrogate model of the code, also termed emulator or metamodel. The goal of a metamodel is not the predictive capability, clearly worse to the original code, but the capacity to propagate uncertainties with a lower computational cost. The emulator must contain the input parameters contributing the most to the output uncertainty, and this requires a previous importance analysis. The surrogate model is practically inexpensive to run, so that it can be exhaustively analyzed through Monte Carlo. Therefore, the epistemic uncertainty due to sampling will be reduced to almost zero, and the BEPU RAC for metamodels includes a simple probability. The regulatory authority will tend to accept the use of statistical methods which need a minimum of assumptions: exact, nonparametric and frequentist methods rather than approximate, parametric and bayesian methods, respectively. The BEPU RAC is based on a second-order probability. The probability of the safety magnitudes being inside the acceptance region is a success probability and can be interpreted as a fulfillment degree if the RAC. Furthermore, it has a metric interpretation, as a distance (in the range of magnitudes) from calculated values of the magnitudes to acceptance regulatory limits. A probabilistic definition of safety margin (SM) is proposed in the thesis. The same from a value A to other value B of a safety magnitude is defined as the probability that A is less severe than B, obtained from the uncertainties if A and B. The probabilistic definition of SM has several advantages: it is nondimensional, ranges in the interval (0,1) and can be easily generalized to multiple dimensions. Furthermore, probabilistic SM are combined according to the probability laws. And a basic property: probabilistic SM are not symmetric. There are several types of SM: distance from a calculated value to a regulatory limit (licensing margin); or from the real value to the calculated value of a magnitude (analytical margin); or from the regulatory limit to the damage threshold (barrier margin). These representations of distances (in the magnitudes’ range) as probabilities can be applied to the quantification of conservativeness. Analytical margins can be interpreted as the degree of conservativeness (DG) of the computational methodology. Conservativeness indicators are established in the Thesis, useful in the comparison of different methods of constructing tolerance limits and regions. There is a topic which has not been rigorously tackled to the date: the validation of BEPU methodologies. Before being applied in licensing, methodologies must be validated, on the basis of comparisons of their predictions ad real values of the safety magnitudes. Real data are obtained, basically, in experimental facilities. The ultimate goal of establishing RAC is to verify that real values (aside from calculated values) fulfill them. In the Thesis it is proved that a sufficient condition for this goal is the conjunction of 2 criteria: the BEPU RAC and an analogous criterion for validation. And this las criterion must be proved in experimental scenarios and extrapolated to NPPs. The licensing RAC requires a minimum value (P0) of the probabilistic licensing margin; the validation criterion requires a minimum value of the analytical margin (i.e., of the DG). These minimum values are basically complementary; the higher one of them, the lower the other one. The regulatory practice sets a high value on the licensing margin, so that the required DG is low. The possible adoption of lower values for P0 would imply weaker exigence on the RCA fulfillment and, on the other hand, higher exigence on the conservativeness of the methodology. It is important to highlight that a higher minimum value of the licensing or analytical margin requires a higher computational cost. Therefore, the computational efforts are also complementary. If medium levels are adopted, the required DG is also medium, and the methodology does not need to be very conservative. The total computational effort (licensing plus validation) could be optimized.
Resumo:
A first-order Lagrangian L ∇ variationally equivalent to the second-order Einstein- Hilbert Lagrangian is introduced. Such a Lagrangian depends on a symmetric linear connection, but the dependence is covariant under diffeomorphisms. The variational problem defined by L ∇ is proved to be regular and its Hamiltonian formulation is studied, including its covariant Hamiltonian attached to ∇ .