946 resultados para retinol binding protein
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
We have determined the structure of the fatty acid-binding protein 6 (fabp6) gene and the tissue-specific distribution of its transcripts in embryos, larvae and adult zebrafish (Danio rerio). Like most members of the vertebrate FABP multigene family, the zebrafish fabp6 gene contains four exons separated by three introns. The coding region of the gene and expressed sequence tags code for a polypeptide of 131 amino acids (14 kDa, pI 6.59). The putative zebrafish Fabp6 protein shared greatest sequence identity with human FABP6 (55.3%) compared to other orthologous mammalian FABPs and paralogous zebrafish Fabps. Phylogenetic analysis showed that the zebrafish Fabp6 formed a distinct clade with the mammalian FABP6s. The zebrafish fabp6 gene was assigned to linkage group (chromosome) 21 by radiation hybrid mapping. Conserved gene synteny was evident between the zebrafish fabp6 gene on chromosome 21 and the FABP6/Fabp6 genes on human chromosome 5, rat chromosome 10 and mouse chromosome 11. Zebrafish fabp6 transcripts were first detected in the distal region of the intestine of embryos at 72 h postfertilization. This spatial distribution remained constant to 7-day-old larvae, the last stage assayed during larval development. In adult zebrafish, fabp6 transcripts were detected by RT-PCR in RNA extracted from liver, heart, intestine, ovary and kidney (most likely adrenal tissue), but not in RNA from skin, brain, gill, eye or muscle. In situ hybridization of a fabp6 riboprobe to adult zebrafish sections revealed intense hybridization signals in the adrenal homolog of the kidney and the distal region of the intestine, and to a lesser extent in ovary and liver, a transcript distribution that is similar, but not identical, to that seen for the mammalian FABP6/Fabp6 gene. © 2008 The Authors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) a leading malaria vaccine candidate in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBPII) within the local malaria parasite population. Methods Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBPII. Results The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subjects age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBPII diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. Conclusion The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBPII diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.
Resumo:
LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Federal University of Sao Paulo
Resumo:
Many studies have reported increased expression of S100 A7 (psoriasin) in neoplastic lesions. Among them are studies on breast carcinoma, bladder squamous cell carcinoma, skin tumors and oral cavity squamous cell carcinoma. The expression of S100 A7 has not been described for laryngeal cancer. Objective: This study aims to identify the expression of the calcium-binding protein S100 A7 and its correlation with squamous cell carcinomas of the larynx. Material and Methods: Specimens from 63 patients were submitted to immunohistochemistry testing with antibody S100 A7. Results were classified and compared. Results: The group with highly differentiated tumors had the highest treatment failure scores. Moderately differentiated tumors had higher treatment failure scores than poorly differentiated tumors. Higher scores were predominantly seen on stages I and II in moderately differentiated tumors, whereas score distribution was more homogeneous in advanced stage disease (III and IV). Regarding failure in treatment, the group scoring zero (3/4 complications: 75%) differed significantly from the remaining groups (13/59: 22%). Conclusions: S100 A7 marker was expressed in 93.7% of laryngeal cancer cases, with higher positive correlation rates in more differentiated tumors and significantly lower rates of treatment failure. Scores had no impact on survival rates.
Resumo:
Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106
Resumo:
Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells). Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD) of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.
Resumo:
Abstract Background The gene coding for the uncharacterized protein PAB1135 in the archaeon Pyrococcus abyssi is in the same operon as the ribonuclease P (RNase P) subunit Rpp30. Findings Here we report the expression, purification and structural analysis of PAB1135. We analyzed the interaction of PAB1135 with RNA and show that it binds efficiently double-stranded RNAs in a non-sequence specific manner. We also performed molecular modeling of the PAB1135 structure using the crystal structure of the protein Af2318 from Archaeoglobus fulgidus (2OGK) as the template. Conclusions Comparison of this model has lead to the identification of a region in PAB1135 that could be involved in recognizing double-stranded RNA.