1000 resultados para quantum memory
Resumo:
We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is fat, worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK
Resumo:
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
Resumo:
The experiment examined the influence of memory for prior instances on aircraft conflict detection. Participants saw pairs of similar aircraft repeatedly conflict with each other. Performance improvements suggest that participants credited the conflict status of familiar aircraft pairs to repeated static features such as speed, and dynamic features such as aircraft relative position. Participants missed conflicts when a conflict pair resembled a pair that had repeatedly passed safely. Participants either did not attend to, or interpret, the bearing of aircraft correctly as a result of false memory-based expectations. Implications for instance models and situational awareness in dynamic systems are discussed.
Resumo:
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.
Resumo:
Prospective memory (ProM) is the memory for future actions. It requires retrieving content of anaction in response to an ambiguous cue. Currently, it is unclear if ProM is a distinct form of memory, or merely a variant of retrospective memory (RetM). While content retrieval in ProM appears analogous to conventional RetM, less is known about the process of cue detection. Using a modified version of the standard ProM paradigm, three experiments manipulated stimulus characteristics known to influence RetM, in order to examine their effects on ProM performance. Experiment 1 (N — 80) demonstrated that low frequency stimuli elicited significantly higher hit rates and lower false alarm rates than high frequency stimuli, comparable to the mirror effect in RetM. Experiment 2 (N = 80) replicated these results, and showed that repetition of distracters during the test phase significantly increased false alarm rates to second and subsequent presentations of low frequency distracters. Building on these results. Experiment 3 (AT = 40) showed that when the study list was strengthened, the repeated presentation of targets and distracters did not significantly affect response rates. These experiments demonstrate more overlap between ProM and RetM than has previously been acknowledged. The implications for theories of ProM are considered.
Resumo:
Protein malnutrition induces structural, neurochemical and functional changes in the central nervous system leading to alterations in cognitive and behavioral development of rats. The aim of this work was to investigate the effects of postnatal protein malnutrition on learning and memory tasks. Previously malnourished (6% protein) and well-nourished rats (16% protein) were tested in three experiments: working memory tasks in the Morris water maze (Experiment I), recognition memory of objects (Experiment II), and working memory in the water T-maze (Experiment III). The results showed higher escape latencies in malnourished animals in Experiment I, lower recognition indexes of malnourished animals in Experiment II, and no differences due to diet in Experiment III. It is suggested that protein malnutrition imposed on early life of rats can produce impairments on both working memory in the Morris maze and recognition memory in the open field tests.
Resumo:
The inferior colliculus (IC) together with the dorsal periaqueductal gray (dPAG), the amygdala and the medial hypothalamus make part of the brain aversion system, which has mainly been related to the organization of unconditioned fear. However, the involvement of the IC and dPAG in the conditioned fear is still unclear. It is certain that GABA has a regulatory role on the aversive states generated and elaborated in these midbrain structures. In this study, we evaluated the effects of injections of the GABA-A receptor agonist muscimol (1.0 and 2.0 nmol/0.2 mu L) into the IC or dPAG on the freezing and fear-potentiated startle (FPS) responses of rats submitted to a context fear conditioning. Intra-IC injections of muscimol did not cause any significant effect on the FPS or conditioned freezing but enhanced the startle reflex in non-conditioned animals. In contrast, intra-dPAG injections of muscimol caused significant reduction in FPS and conditioned freezing without changing the startle reflex in non-conditioned animals. Thus, intra-dPAG injections of muscimol produced the expected inhibitory effects on the anxiety-related responses, the FPS and the freezing whereas these injections into the IC produced quite opposite effects suggesting that descending inhibitory pathways from the IC, probably mediated by GABA-A mechanisms, exert a regulatory role on the lower brainstem circuits responsible for the startle reflex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.
Resumo:
With the purpose of approximating two issues, oral narrative and constructive memory, we assume that children, as well as adults, have a constructive memory. Accordingly, researchers of the constructive memory share with piagetians the vision that memory is an applied cognition. Under this perspective, understanding and coding into memory constitute a process which is considered similar to the piagetian assimilation of building an internal conceptual representation of the information (hence the term constructive memory. The objective of this study is to examine and illustrate, through examples drawn from a research about oral narrative with 5, 8 and 10 years old children, the extent to which the constructive memory is stimulated by the acquisition of the structures of knowledge or ""mental models"" (schemes of stories and scenes, scripts), and if they automatically employ them to process constructively the information in storage and rebuild them in the recovery. A sequence of five pictures from a book without text was transformed into computerized program, and the pictures were thus presented to the children. The story focuses on a misunderstanding of two characters on a different assessment about a key event. In data collection, the demands of memory were preserved, since children narrate their stories when the images were no longer viewed on the computer screen. Each narrative was produced as a monologue. The results show that this story can be told either in a descriptive level or in a more elaborated level, where intentions and beliefs are attributed to the characters. Although this study allows an assessment of the development of children`s capabilities (both cognitive and linguistic) to narrate a story, there are for sure other issues that could be exploited.
Resumo:
In this paper we study the nondegenerate optical parametric oscillator with injected signal, both analytically and numerically. We develop a perturbation approach which allows us to find approximate analytical solutions, starting from the full equations of motion in the positive-P representation. We demonstrate the regimes of validity of our approximations via comparison with the full stochastic results. We find that, with reasonably low levels of injected signal, the system allows for demonstrations of quantum entanglement and the Einstein-Podolsky-Rosen paradox. In contrast to the normal optical parametric oscillator operating below threshold, these features are demonstrated with relatively intense fields.
Resumo:
The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
Colonius suggests that, in using standard set theory as the language in which to express our computational-level theory of human memory, we would need to violate the axiom of foundation in order to express meaningful memory bindings in which a context is identical to an item in the list. We circumvent Colonius's objection by allowing that a list item may serve as a label for a context without being identical to that context. This debate serves to highlight the value of specifying memory operations in set theoretic notation, as it would have been difficult if not impossible to formulate such an objection at the algorithmic level.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.