989 resultados para publication data
Resumo:
Copyright ©ERS 2014.
Resumo:
Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved. Acknowledgements This review is one of a series of systematic reviews for the ROMEO project (Review Of MEn and Obesity), funded by the National Institute for Health Research, Health Technology Assessment Programme (NIHR HTA Project 09/127/01; Systematic reviews and integrated report on the quantitative and qualitative evidence base for the management of obesity in men http://www.hta.ac.uk/2545). The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health. HERU, HSRU and NMAHP are funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The authors accept full responsibility for this publication. We would also like to thank the Men's Health Forums of Scotland, Ireland, England and Wales: Tim Street, Paula Carroll, Colin Fowler and David Wilkins. We also thank Kate Jolly for further information about the Lighten Up trial.
Resumo:
Acknowledgments The authors wish to thank the crews, fishermen and scientists who conducted the various surveys from which data were obtained, and Mark Belchier and Simeon Hill for their contributions. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute with thanks to Paul Brickle. Thanks to Stephen Smith of Fisheries and Oceans Canada (DFO) for help in constructing bootstrap confidence limits. Paul Fernandes receives funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. We also wish to thank two anonymous referees for their helpful suggestions on earlier versions of this manuscript.
Resumo:
Peer reviewed
Resumo:
Conflict of interest: None of the authors have any conflict of interest.
Resumo:
© The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Resumo:
Acknowledgements This work received funding from the Marine Alliance for Science and Technology for Scotland (MASTS) pooling initiative and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. We thank Joshua Lawrence and Niall Fallon for their assistance in collecting some of the video data.
Resumo:
Postprint
Resumo:
Peer reviewed
Resumo:
Visual cluster analysis provides valuable tools that help analysts to understand large data sets in terms of representative clusters and relationships thereof. Often, the found clusters are to be understood in context of belonging categorical, numerical or textual metadata which are given for the data elements. While often not part of the clustering process, such metadata play an important role and need to be considered during the interactive cluster exploration process. Traditionally, linked-views allow to relate (or loosely speaking: correlate) clusters with metadata or other properties of the underlying cluster data. Manually inspecting the distribution of metadata for each cluster in a linked-view approach is tedious, specially for large data sets, where a large search problem arises. Fully interactive search for potentially useful or interesting cluster to metadata relationships may constitute a cumbersome and long process. To remedy this problem, we propose a novel approach for guiding users in discovering interesting relationships between clusters and associated metadata. Its goal is to guide the analyst through the potentially huge search space. We focus in our work on metadata of categorical type, which can be summarized for a cluster in form of a histogram. We start from a given visual cluster representation, and compute certain measures of interestingness defined on the distribution of metadata categories for the clusters. These measures are used to automatically score and rank the clusters for potential interestingness regarding the distribution of categorical metadata. Identified interesting relationships are highlighted in the visual cluster representation for easy inspection by the user. We present a system implementing an encompassing, yet extensible, set of interestingness scores for categorical metadata, which can also be extended to numerical metadata. Appropriate visual representations are provided for showing the visual correlations, as well as the calculated ranking scores. Focusing on clusters of time series data, we test our approach on a large real-world data set of time-oriented scientific research data, demonstrating how specific interesting views are automatically identified, supporting the analyst discovering interesting and visually understandable relationships.
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
Resumo:
Smart cities, cities that are supported by an extensive digital infrastructure of sensors, databases and intelligent applications, have become a major area of academic, governmental and public interest. Simultaneously, there has been a growing interest in open data, the unrestricted use of organizational data for public viewing and use. Drawing on Science and Technology Studies (STS), Urban Studies and Political Economy, this thesis examines how digital processes, open data and the physical world can be combined in smart city development, through the qualitative interview-based case study of a Southern Ontario Municipality, Anytown. The thesis asks what are the challenges associated with smart city development and open data proliferation, is open data complimentary to smart urban development; and how is expertise constructed in these fields? The thesis concludes that smart city development in Anytown is a complex process, involving a variety of visions, programs and components. Although smart city and open data initiatives exist in Anytown, and some are even overlapping and complementary, smart city development is in its infancy. However, expert informants remained optimistic, faithful to a technologically sublime vision of what a smart city would bring. The thesis also questions the notion of expertise within the context of smart city and open data projects, concluding that assertions of expertise need to be treated with caution and scepticism when considering how knowledge is received, generated, interpreted and circulates, within organizations.
Resumo:
This dissertation offers a critical international political economy (IPE) analysis of the ways in which consumer information has been governed throughout the formal history of consumer finance (1840 – present). Drawing primarily on the United States, this project problematizes the notion of consumer financial big data as a ‘new era’ by tracing its roots historically from late nineteenth century through to the present. Using a qualitative case study approach, this project applies a unique theoretical framework to three instances of governance in consumer credit big data. Throughout, the historically specific means used to govern consumer credit data are rooted in dominant ideas, institutions and material factors.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.