925 resultados para probabilistic principal component analysis (probabilistic PCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, chemometric methods are reported as potential tools for monitoring the authenticity of Brazilian ultra-high temperature (UHT) milk processed in industrial plants located in different regions of the country. A total of 100 samples were submitted to the qualitative analysis of adulterants such as starch, chlorine, formal. hydrogen peroxide and urine. Except for starch, all the samples reported, at least, the presence of one adulterant. The use of chemometric methodologies such as the Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) enabled the verification of the occurrence of certain adulterations in specific regions. The proposed multivariate approaches may allow the sanitary agency authorities to optimise materials, human and financial resources, as they associate the occurrence of adulterations to the geographical location of the industrial plants. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of major, minor and trace metals were measured in water samples collected from five shallow Antarctic lakes (Carezza, Edmonson Point (No 14 and 15a), Inexpressible Island and Tarn Flat) found in Terra Nova Bay (northern Victoria Land, Antarctica) during the Italian Expeditions of 1993-2001. The total concentrations of a large suite of elements (Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Gd, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, Sc, Si, Sr, Ta, Ti, U, V, Y, W, Zn and Zr) were determined using spectroscopic techniques (ICP-AES, GF-AAS and ICP-MS). The results are similar to those obtained for the freshwater lakes of the Larsemann Hills, East Antarctica, and for the McMurdo Dry Valleys. Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed to identify groups of samples with similar characteristics and to find correlations between the variables. The variability observed within the water samples is closely connected to the sea spray input; hence, it is primarily a consequence of geographical and meteorological factors, such as distance from the ocean and time of year. The trace element levels, in particular those of heavy metals, are very low, suggesting an origin from natural sources rather than from anthropogenic contamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sum: Plant biologists in fields of ecology, evolution, genetics and breeding frequently use multivariate methods. This paper illustrates Principal Component Analysis (PCA) and Gabriel's biplot as applied to microarray expression data from plant pathology experiments. Availability: An example program in the publicly distributed statistical language R is available from the web site (www.tpp.uq.edu.au) and by e-mail from the contact. Contact: scott.chapman@csiro.au.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter, especially PM2.5, is associated with increased morbidity and mortality from respiratory diseases. Studies that focus on the chemical composition of the material are frequent in the literature, but those that characterize the biological fraction are rare. The objectives of this study were to characterize samples collected in Sao Paulo, Brazil on the quantity of fungi and endotoxins associated with PM2.5, correlating with the mass of particulate matter, chemical composition and meteorological parameters. We did that by Principal Component Analysis (PCA) and multiple linear regressions. The results have shown that fungi and endotoxins represent significant portion of PM2.5, reaching average concentrations of 772.23 spores mu g(-1) of PM2.5 (SD: 400.37) and 5.52 EU mg(-1) of PM2.5 (SD: 4.51 EU mg(-1)), respectively. Hyaline basidiospores, Cladosporium and total spore counts were correlated to factor Ba/Ca/Fe/Zn/K/Si of PM2.5 (p < 0.05). Genera Pen/Asp were correlated to the total mass of PM2.5 (p < 0.05) and colorless ascospores were correlated to humidity (p < 0.05). Endotoxin was positively correlated with the atmospheric temperature (p < 0.05). This study has shown that bioaerosol is present in considerable amounts in PM2.5 in the atmosphere of Sao Paulo, Brazil. Some fungi were correlated with soil particle resuspension and mass of particulate matter. Therefore, the relative contribution of bioaerosol in PM2.5 should be considered in future studies aimed at evaluating the clinical impact of exposure to air pollution. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho ?? o de construir um ??ndice de gest??o municipal em cultura, com o potencial de servir de balizador para as a????es nesta ??rea tanto no ??mbito municipal quanto no das esferas estaduais e federal. Para tanto s??o utilizados dados do ???Perfil dos Munic??pios Brasileiros ??? Cultura 2006???, publicado pelo IBGE, o qual disp??e das respostas de 5.562 munic??pios sobre cultura e gest??o cultural. As respostas foram tabuladas e combinadas de forma a produzir vari??veis espec??ficas para a constru????o do ??ndice. O m??todo utilizado para a constru????o do ??ndice de Gest??o Municipal em Cultura (IGMC) foi o de an??lise de componentes principais, que permite ?? pr??pria amostra definir os pesos que cada vari??vel exercer?? na computa????o do ??ndice final. Al??m do IGMC geral, foram computados no processo tr??s sub??ndices, cada um deles procurando refletir um aspecto espec??fico da gest??o municipal em cultura, a saber: fortalecimento institucional e gest??o democr??tica, infraestrutura e recursos humanos, e a????o cultural. Os resultados obtidos permitem diversos tipos de compara????es intermunicipais e regionais, bem como a prescri????o de a????es locais na ??rea de gest??o que visem ?? melhoria da administra????o cultural dos munic??pios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combinação da agricultura de precisão e do Sistema Integrado de Recomendação Foliar (DRIS) possibilita monitorar espacialmente o balanço nutricional dos cafezais para fornecer recomendações de adubação mais equilibradas e mais ajustadas economicamente. O objetivo deste trabalho foi avaliar a variabilidade espacial do estado nutricional do cafeeiro conilon, utilizando o Índice de Balanço Nutricional (IBN) e sua relação com a produtividade. A produtividade das plantas em cada ponto amostral foi determinada e construiu-se o seu mapa considerando a variabilidade espacial; determinou-se o Índice de Equilíbrio Nutricional (IBN) das plantas em cada ponto amostral e construiu-se o seu mapa; e utilizou-se a análise de componentes principais (ACP) para estimar o IBN do cafeeiro por cokrigagem. Os dados do cafeeiro conilon foram coletados em fazenda experimental, no município de Cachoeiro de Itapemirim-ES. O IBN do cafeeiro e a sua produtividade foram analisados por meio de geoestatística, com base nos modelos e parâmetros dos semivariogramas, utilizando o método de interpolação krigagem ordinária para estimar valores para locais não amostrados. O índice de Balanço Nutricional da lavoura do cafeeiro conilon apresentou dependência espacial, porém não apresentou correlação linear e nem espacial com a produtividade. A lavoura em estudo se encontra em desequilíbrio nutricional, sendo que entre os macronutrientes, o Potássio foi o que apresentou maior desequilíbrio na área, entre os micronutrientes, o Zinco e o Ferro foram os que apresentaram menores concentrações nas folhas. A confecção dos mapas possibilitou a distinção de regiões com maior e menor desequilíbrio nutricional e produtividade, o que possibilita adotar o manejo de forma diferenciada e localizada. A análise multivariada baseada em componentes principais fornece componentes com alta correlação com as variáveis originais P, Ca, Zn , Cu, K e B. A cokrigagem utilizando as componentes principais permite estimar o IBN e a produtividade da área.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploratory factor analysis is a widely used statistical technique in the social sciences. It attempts to identify underlying factors that explain the pattern of correlations within a set of observed variables. A statistical software package is needed to perform the calcula- tions. However, there are some limitations with popular statistical software packages, like SPSS. The R programming language is a free software package for statistical and graphical computing. It o ers many packages written by contributors from all over the world and programming resources that allow it to overcome the dialog limitations of SPSS. This paper o ers an SPSS dialog written in the R programming language with the help of some packages, so that researchers with little or no knowledge in programming, or those who are accustomed to making their calculations based on statistical dialogs, have more options when applying factor analysis to their data and hence can adopt a better approach when dealing with ordinal, Likert-type data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.