982 resultados para planar stack
Resumo:
[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The methodology is used to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)…
Resumo:
Congresos y conferencias
Resumo:
[EN]We present advances of the meccano method for T-spline modelling and analysis of complex geometries. We consider a planar domain composed by several irregular sub-domains. These sub-regions are defined by their boundaries and can represent different materials. The bivariate T-spline representation of the whole physical domain is constructed from a square. In this procedure, a T-mesh optimization method is crucial. We show results of an elliptic problem by using a quadtree local T-mesh refinement technique…
Resumo:
[EN]We present a new strategy, based on the meccano method [1, 2, 3], to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. The key of the method lies in defining an isomorphic transformation between the parametric and physical T-mesh finding the optimal position of the interior nodes by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by imposing the interpolation conditions on points sited both on the interior and on the boundary of the geometry…
Resumo:
[EN]The authors have recently introduced the meccano method for tetrahedral mesh generation and volume parameterization of solids. In this paper, we present advances of the method for T-spline modelling and analysis of complex geometries. We consider a planar domain composed by several irregular sub-domains. These sub-regions are defined by their boundaries and can represent different materials. The bivariate T-spline representation of the whole physical domain is constructed from a square. In this procedure, a T-mesh optimization method is crucial. We show results of an elliptic problem by using a quadtree local T-mesh refinement technique…
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
In this thesis I present theoretical and experimental results concern- ing the operation and properties of a new kind of Penning trap, the planar trap. It consists of circular electrodes printed on an isolating surface, with an homogeneous magnetic field pointing perpendicular to that surface. The motivation of such geometry is to be found in the construction of an array of planar traps for quantum informa- tional purposes. The open access to radiation of this geometry, and the long coherence times expected for Penning traps, make the planar trap a good candidate for quantum computation. Several proposals for quantum 2-qubit interactions are studied and estimates for their rates are given. An expression for the electrostatic potential is presented, and its fea- tures exposed. A detailed study of the anharmonicity of the potential is given theoretically and is later demonstrated by experiment and numerical simulations, showing good agreement. Size scalability of this trap has been studied by replacing the original planar trap by a trap twice smaller in the experimental setup. This substitution shows no scale effect apart from those expected for the scaling of the parameters of the trap. A smaller lifetime for trapped electrons is seen for this smaller trap, but is clearly matched to a bigger misalignment of the trap’s surface and the magnetic field, due to its more difficult hand manipulation. I also give a hint that this trap may be of help in studying non-linear dynamics for a sextupolarly perturbed Penning trap.
Resumo:
The goal of this thesis was the investigation of the structure, conformation, supramolecular order and molecular dynamics of different classes of functional materials (phthalocyanine, perylene and hexa-peri-hexabenzocoronene derivatives and mixtures of those), all having planar aromatic cores modified with various types of alkyl chains. The planar aromatic systems are known to stack in the solid and the liquid-crystalline state due to p-p interactions forming columnar superstructures with high one-dimensional charge carrier mobility and potential application in photovoltaic devices. The different functionalities attached to the aromatic cores significantly influence the behavior of these systems allowing the experimentalists to modify the structures to fine-tune the desired thermotropic properties or charge carrier mobility. The aim of the presented studies was to understand the interplay between the driving forces causing self-assembly by relating the structural and dynamic information about the investigated systems. The supramolecular organization is investigated by applying 1H solid state NMR recoupling techniques. The results are related with DSC and X-ray scattering data. Detailed information about the site-specific molecular dynamics is gained by recording spinning sideband patterns using 1H-1H and 13C-1H solid state NMR recoupling techniques. The determined dipole-dipole coupling constants are then related with the coupling constants of the respective rigid pairs, thus providing local dynamic order parameters for the respective moieties. The investigations presented reveal that in the crystalline state the preferred arrangement in the columnar stack of discotic molecules modified with alkyl chains is tilted. This leads to characteristic differences in the 1H chemical shifts of otherwise chemically equivalent protons. Introducing branches and increasing the length of the alkyl chains results in lower mesophase transitions and disordered columnar stacks. In the liquid-crystalline state some of the discs lose the tilted orientation, others do not, but all start a rapid rotation about the columnar axis.
Resumo:
This doctoral dissertation presents a new method to asses the influence of clearancein the kinematic pairs on the configuration of planar and spatial mechanisms. The subject has been widely investigated in both past and present scientific literature, and is approached in different ways: a static/kinetostatic way, which looks for the clearance take-up due to the external loads on the mechanism; a probabilistic way, which expresses clearance-due displacements using probability density functions; a dynamic way, which evaluates dynamic effects like the actual forces in the pairs caused by impacts, or the consequent vibrations. This dissertation presents a new method to approach the problem of clearance. The problem is studied from a purely kinematic perspective. With reference to a given mechanism configuration, the pose (position and orientation) error of the mechanism link of interest is expressed as a vector function of the degrees of freedom introduced in each pair by clearance: the presence of clearance in a kinematic pair, in facts, causes the actual pair to have more degrees of freedom than the theoretical clearance-free one. The clearance-due degrees of freedom are bounded by the pair geometry. A proper modelling of clearance-affected pairs allows expressing such bounding through analytical functions. It is then possible to study the problem as a maximization problem, where a continuous function (the pose error of the link of interest) subject to some constraints (the analytical functions bounding clearance- due degrees of freedom) has to be maximize. Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been analytically modelled; with reference to mechanisms involving such pairs, the solution to the maximization problem has been obtained in a closed form.
Resumo:
The seismic behaviour of one-storey asymmetric structures has been studied since 1970s by a number of researches studies which identified the coupled nature of the translational-to-torsional response of those class of systems leading to severe displacement magnifications at the perimeter frames and therefore to significant increase of local peak seismic demand to the structural elements with respect to those of equivalent not-eccentric systems (Kan and Chopra 1987). These studies identified the fundamental parameters (such as the fundamental period TL normalized eccentricity e and the torsional-to-lateral frequency ratio Ωϑ) governing the torsional behavior of in-plan asymmetric structures and trends of behavior. It has been clearly recognized that asymmetric structures characterized by Ωϑ >1, referred to as torsionally-stiff systems, behave quite different form structures with Ωϑ <1, referred to as torsionally-flexible systems. Previous research works by some of the authors proposed a simple closed-form estimation of the maximum torsional response of one-storey elastic systems (Trombetti et al. 2005 and Palermo et al. 2010) leading to the so called “Alpha-method” for the evaluation of the displacement magnification factors at the corner sides. The present paper provides an upgrade of the “Alpha Method” removing the assumption of linear elastic response of the system. The main objective is to evaluate how the excursion of the structural elements in the inelastic field (due to the reaching of yield strength) affects the displacement demand of one-storey in-plan asymmetric structures. The system proposed by Chopra and Goel in 2007, which is claimed to be able to capture the main features of the non-linear response of in-plan asymmetric system, is used to perform a large parametric analysis varying all the fundamental parameters of the system, including the inelastic demand by varying the force reduction factor from 2 to 5. Magnification factors for different force reduction factor are proposed and comparisons with the results obtained from linear analysis are provided.
Resumo:
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.
Resumo:
In questo lavoro si indaga la possibilita' di includere lo stack TCP-IP NetBSD, estratto come libreria dinamica ed eseguito all'interno di un kernel rump, come sottomodulo di rete della System Call Virtual Machine UMView di Virtual Square. Il risultato ottenuto consiste in umnetbsd, il modulo che ne dimostra la fattibilita', e libvdeif, una libreria per connettere kernel rump a switch VDE.
Resumo:
In questo lavoro verrà presentato ExoTCP, uno stack di rete minimale e userspace specializzato per il protocollo HTTP. Verrà inoltre presentato Eth, un server web zerocopy che utilizza ExoTCP per servire contenuti statici. L'obiettivo del lavoro è riuscire ad ottenere prestazioni migliori di quelle di un server web tradizionale che si appoggia ai servizi offerti dal sistema operativo per accedere alla rete.
Resumo:
In questo lavoro si introduce il progetto di estrarre lo stack tcp-ip dal kernel di linux e farlo funzionare come una normale libreria in userspace. Si parlerà dei vantaggi di avere lo stack tcp-ip in userspace, di altri progetti simili, del motivo per cui si è scelto lo stack di linux, dei principali problemi incontrati nel corso del lavoro, del percorso seguito, e di come il risultato possa essere migliorato per renderlo uno strumento effettivamente utile.
Resumo:
Progetto SHERPA. Installazione e configurazione del Navigaton Stack su Rover terrestre. Utilizzo e configurazione di LMS151 Sick. Utilizzo e configurazione di Asus Xtion Pro. Progettazione di software per la localizzazione e l'inseguimento di persone tramite camera di profondita.