994 resultados para place recognition
Resumo:
Aims and objectives. The aim of this study was to gain an understanding of the experiences and perspectives of intensive care nurses caring for critically ill obstetric patients. Background. Current literature suggests critically ill obstetric patients need specialised, technically appropriate care to meet their specific needs with which many intensive care nurses are unfamiliar. Furthermore, there is little research and evidence to guide the care of this distinct patient group. Design. This study used a descriptive qualitative design. Methods. Two focus groups were used to collect data from 10 Australian intensive care units nurses in May 2007. Open-ended questions were used to guide the discussion. Latent content analysis was used to analyse the data set. Each interview lasted no longer than 60 minutes and was recorded using audio tape. The full interviews were transcribed prior to in-depth analysis to identify major themes. Results. The themes identified from the focus group interviews were competence with knowledge and skills for managing obstetric patients in the intensive care unit, confidence in caring for obstetric patients admitted to the intensive care unit and acceptance of an expanded scope of practice perceived to include fundamental midwifery knowledge and skills. Conclusion. The expressed lack of confidence and competence in meeting the obstetric and support needs of critically ill obstetric women indicates a clear need for greater assistance and education of intensive care nurses. This in turn may encourage critical care nurses to accept an expanded role of clinical practice in caring for critically ill obstetric patients. Relevance to clinical practice. Recognition of the issues for nurses in successfully caring for obstetric patients admitted to an adult intensive care setting provides direction for designing education packages, ensuring specific carepaths and guidelines are in place and that support from a multidisciplinary team is available including midwifery staff.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
Features derived from the trispectra of DFT magnitude slices are used for multi-font digit recognition. These features are insensitive to translation, rotation, or scaling of the input. They are also robust to noise. Classification accuracy tests were conducted on a common data base of 256× 256 pixel bilevel images of digits in 9 fonts. Randomly rotated and translated noisy versions were used for training and testing. The results indicate that the trispectral features are better than moment invariants and affine moment invariants. They achieve a classification accuracy of 95% compared to about 81% for Hu's (1962) moment invariants and 39% for the Flusser and Suk (1994) affine moment invariants on the same data in the presence of 1% impulse noise using a 1-NN classifier. For comparison, a multilayer perceptron with no normalization for rotations and translations yields 34% accuracy on 16× 16 pixel low-pass filtered and decimated versions of the same data.
Resumo:
In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image
Resumo:
An application of image processing techniques to recognition of hand-drawn circuit diagrams is presented. The scanned image of a diagram is pre-processed to remove noise and converted to bilevel. Morphological operations are applied to obtain a clean, connected representation using thinned lines. The diagram comprises of nodes, connections and components. Nodes and components are segmented using appropriate thresholds on a spatially varying object pixel density. Connection paths are traced using a pixel-stack. Nodes are classified using syntactic analysis. Components are classified using a combination of invariant moments, scalar pixel-distribution features, and vector relationships between straight lines in polygonal representations. A node recognition accuracy of 82% and a component recognition accuracy of 86% was achieved on a database comprising 107 nodes and 449 components. This recogniser can be used for layout “beautification” or to generate input code for circuit analysis and simulation packages
Resumo:
Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.
Resumo:
The performance of automatic speech recognition systems deteriorates in the presence of noise. One known solution is to incorporate video information with an existing acoustic speech recognition system. We investigate the performance of the individual acoustic and visual sub-systems and then examine different ways in which the integration of the two systems may be performed. The system is to be implemented in real time on a Texas Instruments' TMS320C80 DSP.
Resumo:
A system to segment and recognize Australian 4-digit postcodes from address labels on parcels is described. Images of address labels are preprocessed and adaptively thresholded to reduce noise. Projections are used to segment the line and then the characters comprising the postcode. Individual digits are recognized using bispectral features extracted from their parallel beam projections. These features are insensitive to translation, scaling and rotation, and robust to noise. Results on scanned images are presented. The system is currently being improved and implemented to work on-line.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
In this chapter we describe a history of collaboration between university-based literacy researchers and school-based teachers in teacher development programs and practitioner inquiries designed to improve literacy outcomes for students living in low-socioeconomic circumstances. We consider how an inquiry stance has informed teachers working for social justice through curriculum and pedagogy designed to connect children’s developing literacy repertoires with their changing material, social and linguistic contexts. We use examples from the practices of two of our long-term teacher-collaborators to show what has been possible to achieve, even in radically different policy contexts, because of teachers’ continued commitment to themes of place and belonging, and language and identity.
Resumo:
This paper argues that teachers’ recognition of children’s cultural practices is an important positive step in helping socio-economically disadvantaged children engage with school literacies. Based on twenty-one longitudinal case studies of children’s literacy development over a three-year period, the authors demonstrate that when children’s knowledges and practices assembled in home and community spheres are treated as valuable material for school learning, children are more likely to invest in the work of acquiring school literacies. However they show also that whilst some children benefit greatly from being allowed to draw on their knowledge of popular culture, sports and the outdoors, other children’s interests may be ignored or excluded. Some differences in teachers’ valuing of home and community cultures appeared to relate to gender dimensions.
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.
Resumo:
In automatic facial expression recognition, an increasing number of techniques had been proposed for in the literature that exploits the temporal nature of facial expressions. As all facial expressions are known to evolve over time, it is crucially important for a classifier to be capable of modelling their dynamics. We establish that the method of sparse representation (SR) classifiers proves to be a suitable candidate for this purpose, and subsequently propose a framework for expression dynamics to be efficiently incorporated into its current formulation. We additionally show that for the SR method to be applied effectively, then a certain threshold on image dimensionality must be enforced (unlike in facial recognition problems). Thirdly, we determined that recognition rates may be significantly influenced by the size of the projection matrix \Phi. To demonstrate these, a battery of experiments had been conducted on the CK+ dataset for the recognition of the seven prototypic expressions - anger, contempt, disgust, fear, happiness, sadness and surprise - and comparisons have been made between the proposed temporal-SR against the static-SR framework and state-of-the-art support vector machine.