953 resultados para physiology and biophysics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4(-/-)) mice under various light-dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7-10 Hz) and gamma (40-70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4(-/-) mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-hratio1-h schedule revealed that the failure to respond to light in Opn4(-/-) mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4(-/-) mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4(-/-) mice slept 1 h less during the 12-h light period of a LD 12ratio12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4(-/-) mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4(-/-) mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Hypoxia is known to reduce maximal oxygen uptake (VO(2max)) more in trained than in untrained subjects in several lowland sports. Ski mountaineering is practiced mainly at altitude, so elite ski mountaineers spend significantly longer training duration at altitude than their lower-level counterparts. Since acclimatization in hypobaric hypoxia is effective, the authors hypothesized that elite ski mountaineers would exhibit a VO2max decrement in hypoxia similar to that of recreational ski mountaineers. METHODS: Eleven elite (E, Swiss national team) and 12 recreational (R) ski mountaineers completed an incremental treadmill test to exhaustion in normobaric hypoxia (H, 3000 m, F(1)O(2) 14.6% ± 0.1%) and in normoxia (N, 485 m, F(1)O(2) 20.9% ± 0.0%). Pulse oxygen saturation in blood (SpO(2)), VO(2max), minute ventilation, and heart rate were recorded. RESULTS: At rest, hypoxic ventilatory response was higher (P < .05) in E than in R (1.4 ± 1.9 vs 0.3 ± 0.6 L · min⁻¹ · kg⁻¹). At maximal intensity, SpO(2) was significantly lower (P < .01) in E than in R, both in N (91.1% ± 3.3% vs 94.3% ± 2.3%) and in H (76.4% ± 5.4% vs 82.3% ± 3.5%). In both groups, SpO(2) was lower (P < .01) in H. Between N and H, VO(2max) decreased to a greater extent (P < .05) in E than in R (-18% and -12%, P < .01). In E only, the VO(2max) decrement was significantly correlated with the SpO(2) decrement (r = .74, P < .01) but also with VO(2max) measured in N (r = .64, P < .05). CONCLUSION: Despite a probable better acclimatization to altitude, VO(2max) was more reduced in E than in R ski mountaineers, confirming previous results observed in lowlander E athletes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucagon-like peptide (GLP)-1 action involves both endocrine and neural pathways to control peripheral tissues. In diabetes the impairment of either pathway may define different subsets of patients: some may be better treated with GLP-1 receptor agonists that are more likely to directly stimulate beta-cells and extrapancreatic receptors, while others may benefit from dipeptidyl peptidase (DPP)-4 inhibitor treatments that are more likely to increase the neural gut-brain-pancreas axis. Elevated plasma concentrations of GLP-1 associated with agonist treatment or bariatric surgery also appear to exert neuroprotective effects, ameliorate postprandial and fasting lipids, improve heart physiology and protect against heart failure, thereby expanding the possible positioning of GLP-1-based therapies. However, the mechanisms behind GLP-1 secretion, the role played by proximal and distal intestinal GLP-1-producing cells as well as the molecular basis of GLP-1 resistance in diabetes are still to be ascertained. The pharmacological features distinguishing GLP-1 receptor agonists from DPP-4 inhibitors are discussed here to address their respective positions in type 2 diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Membrane transport of proton and calcium (Ca2+) plays a fundamental role in growth and developmental processes in higher plant cells. The plasma membrane contains an ATPase (P-ATPase) that pumps protons into the extracellular space, whereas two proton pumps, a vacuolar-type ATPase (V-ATPase) and a pyrophosphatase (H+-PPase) are associated with the tonoplast and pump protons into the vacuole. The P-ATPase, V-ATPase and H+-PPase catalyse electrogenic H+-translocation, giving rise to a proton motive force used to transport different molecules, via specific transport proteins (channels or carriers: H+-symport or H+-antiport), across the plasma membrane and the tonoplast

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION Genetic variations may influence clinical outcomes in patients with sepsis. The present study was conducted to evaluate the impact on mortality of three polymorphisms after adjusting for confounding variables, and to assess the factors involved in progression of the inflammatory response in septic patients. METHOD The inception cohort study included all Caucasian adults admitted to the hospital with sepsis. Sepsis severity, microbiological information and clinical variables were recorded. Three polymorphisms were identified in all patients by PCR: the tumour necrosis factor (TNF)-alpha 308 promoter polymorphism; the polymorphism in the first intron of the TNF-beta gene; and the IL-10-1082 promoter polymorphism. Patients included in the study were followed up for 90 days after hospital admission. RESULTS A group of 224 patients was enrolled in the present study. We did not find a significant association among any of the three polymorphisms and mortality or worsening inflammatory response. By multivariate logistic regression analysis, only two factors were independently associated with mortality, namely Acute Physiology and Chronic Health Evaluation (APACHE) II score and delayed initiation of adequate antibiotic therapy. In septic shock patients (n = 114), the delay in initiation of adequate antibiotic therapy was the only independent predictor of mortality. Risk factors for impairment in inflammatory response were APACHE II score, positive blood culture and delayed initiation of adequate antibiotic therapy. CONCLUSION This study emphasizes that prompt and adequate antibiotic therapy is the cornerstone of therapy in sepsis. The three polymorphisms evaluated in the present study appear not to influence the outcome of patients admitted to the hospital with sepsis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent progress in understanding plant defence has highlighted a complex, interacting network of signalling pathways leading to the induction of numerous genes. The advent of new technologies for the global analysis of gene expression is fundamentally affecting research in biology, and studies on plant defence should benefit from these new approaches. Genome-wide microarrays will provide a powerful tool for the discovery of all defence-related genes and should help in elucidating their function. The association of a particular signalling pathway with a defence response can be tested with microarrays and defined mutants. Comparison of transcript profiles after biotic and abiotic stresses reveals overlapping activation of defence-related genes and defines new concepts on how plants cope with multiple aggressions. The combination of expression data with other biochemical or metabolite measurements seems another promising approach. Finally, small-scale, dedicated microarrays containing sets of well-characterised genes might prove to be a very useful complement to more expensive, less accessible, large-scale arrays.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The common ectodermal origin of the skin and nervous systems can be expected to predict likely interactions in the adult. Over the last couple of decades much progress has been made to elucidate the nature of these interactions, which provide multidirectional controls between the centrally located brain and the peripherally located skin and immune system. The opioid system is an excellent example of such an interaction and there is growing evidence that opioid receptors (OR) and their endogenous opioid agonists are functional in different skin structures, including peripheral nerve fibres, keratinocytes, melanocytes, hair follicles and immune cells. Greater knowledge of these skin-associated opioid interactions will be important for the treatment of chronic and acute pain and pruritus. Topical treatment of the skin with opioid ligands is particularly attractive as they are active with few side effects, especially if they cannot cross the blood-brain barrier. Moreover, cutaneous activation of the opioid system (e.g. by peripheral nerves, cutaneous and immune cells, especially in inflamed and damaged skin) can influence cell differentiation and apoptosis, and thus may be important for the repair of damaged skin. While many of the pieces of this intriguing puzzle remain to be found, we attempt in this review to weave a thread around available data to discuss how the peripheral opioid system may impact on different key players in skin physiology and pathology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hypocretins, also known as orexins, are two neuropeptides now commonly described as critical components to maintain and regulate the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. Intracerebral administration of hypocretin leads to a dose-related reinstatement of drug and food seeking behaviors. Furthermore, stress-induced reinstatement can be blocked with hypocretin receptor 1 antagonism. These results, together with recent data showing that hypocretin is critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area, strongly suggest that activation of hypocretin neurons play a critical role in the development of the addiction process. The activity of hypocretin neurons may affect addictive behavior by contributing to brain sensitization or by modulating the brain reward system. Hypocretinergic cells, in coordination with brain stress systems may lead to a vulnerable state that facilitates the resumption of drug seeking behavior. Hence, the hypocretinergic system is a new drug target that may be used to prevent relapse of drug seeking

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given the important role of the shoulder sensorimotor system in shoulder stability, its assessment appears of interest. Force platform monitoring of centre of pressure (CoP) in upper-limb weight-bearing positions is of interest as it allows integration of all aspects of shoulder sensorimotor control. This study aimed to determine the feasibility and reliability of shoulder sensorimotor control assessment by force platform. Forty-five healthy subjects performed two sessions of CoP measurement using Win-Posturo(®) Medicapteurs force platform in an upper-limb weight-bearing position with the lower limbs resting on a table to either the anterior superior iliac spines (P1) or upper patellar poles (P2). Four different conditions were tested in each position in random order: eyes open or eyes closed with trunk supported by both hands and eyes open with trunk supported on the dominant or non-dominant side. P1 reliability values were globally moderate to high for CoP length, CoP velocity and CoP standard deviation (SD), standard error of measurement ranged from 6·0% to 26·5%, except for CoP area. P2 reliability values were globally low and not clinically acceptable. Our results suggest that shoulder sensorimotor control assessment by force platform is feasible and has good reliability in upper-limb weight-bearing positions when the lower limbs are resting on a table to the anterior superior iliac spines. CoP length, CoP velocity and CoP SD velocity appear to be the most reliable variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present thesis comprises two study populations. The first study sample (SS1) consisted of 411 adults examined and interviewed at three annual visits. The second study sample (SS2) consisted of 1720 adults who filled in a mailed questionnaire about secondary otalgia, tinnitus and fullness of ears. In the second phase of the SS2, 100 subjects with otalgia were examined and interviewed by specialist in stomatognathic physiology and otorhinolaryngology. In the third phase, 36 subjects participated in a randomized, controlled and blinded trial of effectiveness of occlusal appliance on secondary otalgia, facial pain, headache and treatment need of temporomandibular disorders (TMD). The standardized prevalence of recurrent secondary otalgia was 6%, tinnitus 15% and fullness of ears 8%. Aural symptoms were more frequent among young than old subjects. They were associated with other, simultaneous aural symptoms, TMD pain, head and neck region pain, and visits to a physician. The subjects with aural symptoms more often had tenderness on palpation of masticatory muscles and clinical signs of temporomandibular joint than the subjects without. 85% of the subjects reporting secondary otalgia had cervical spine or temporomandibular disorder or both. In SS1, the final model of secondary otalgia included active need treatment for TMD, elevated level of stress symptoms, and bruxism. In SS2, the final models of aural symptoms included associated aural symptoms, young age, TMD pain, headache and shoulder ache. Stabilization splint more effectively alleviated secondary otalgia and active treatment need for TMD than a palatal control splint. In patients with aural pain, tinnitus or fullness of ears, it is important to first rule out otologic and nasopharyngeal diseases that may cause the symptoms. If no explanation for aural symptoms is found, temporomandibular and cervical spine disorders should be rouled out to minimize unnecessary visits to a physician.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior.