989 resultados para physiological age
Resumo:
In this study, we described the frequency of attempted suicide among women of reproductive age (10 to 49 years) in a General University Hospital in Ribeirao Preto, Brazil (conducted 2005). Relevant comorbidities associated with the suicide attempt were calculated. Secondary data were obtained through the hospital`s records where attempted suicides were reported. Findings revealed 132 attempted suicides; most women took a toxic substance or their own medication. Half of the women previously had attempted suicide. Depression was the most frequent psychiatric diagnosis on discharge from the hospital, specifically borderline personality disorder, personality disorders axis B and depression without association.
Resumo:
The analysis of heteroplasmy (presence of more than one type of mitochondrial DNA in an individual) is used as a tool in human identification studies, anthropology, and most currently in studies that relate heteroplasmy with longevity. The frequency of heteroplasmy and its correlation with age has been analyzed using different tissues such as blood, muscle, heart, bone and brain and in different regions of mitochondrial DNA, but this analysis had never been performed using hair samples. In this study, samples of hair were sequenced in order to ascertain whether the presence or not of heteroplasmy varied according to age, sex and origin of haplogroup individuals. The samples were grouped by age (3 groups), gender (male and female) and haplogroup of origin (European, African and Native American), and analyzed using the chi-square statistical test (chi(2)). Based in statistical results obtained, we conclude that there is no relationship between heteroplasmy and sex, age and haplogroup origin using hair samples.
Resumo:
The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hormones are likely to be important factors modulating the light-dependent anthocyanin accumulation. Here we analyzed anthocyanin contents in hypocotyls of near isogenic Micro-Tom (MT) tomato lines carrying hormone and phytochrome mutations, as single and double-mutant combinations. In order to recapitulate mutant phenotype, exogenous hormone applications were also performed Anthocyanin accumulation was promoted by exogenous abscisic acid (ABA) and inhibited by gibberellin (GA), in accordance to the reduced anthocyanin contents measured in ABA-deficient (notabills) and GA-constitutive response (procera) mutants. Exogenous cytokinin also enhanced anthocyanin levels in MT hypocotyls. Although auxin-insensitive chageotropica mutant exhibited higher anthocyanin contents, pharmacological approaches employing exogenous auxin and a transport inhibitor did not support a direct role of the hormone in anthocyanin accumulation Analysis of mutants exhibiting increased ethylene production (epwastic) or reduced sensitivity (Never ripe), together with pharmacological data obtained from plants treated with the hormone, indicated a limited role for ethylene in anthocyanin contents. Phytochrome-deficiency (aurea) and hormone double-mutant combinations exhibited phenotypes suggesting additive or synergistic interactions, but not fully espistatic ones, in the control of anthocyanin levels in tomato hypocotyls. Our results indicate that phytochrome-mediated anthocyanin accumulation in tomato hypocotyls is modulated by distinct hormone classes via both shared and independent pathways. (C) 2010 Elsevier Ireland Ltd. All rights reserved
Resumo:
This study examined the effects of temperature and wetness duration in vitro and in vivo as well as the effects of fruit age on germination and appressoria formation by conidia of Guignardia psidii, the causal agent of black spot disease in guava fruit. The temperatures tested for in vitro and in vivo experiments were 10, 15, 20, 25, 30, 35 and 40 degrees C. The wetness periods studied were 6, 12, 24, 36 and 48 h in vitro and 6, 12 and 24 h in vivo. Fruit 10, 35, 60, 85 and 110-days old were inoculated and maintained at 25 degrees C, with a wetness period of 24 h. Temperature and wetness duration affected the variables evaluated in vitro and in vivo. All variables reached their maximum values at between 25 and 30 degrees C with a wetness duration of 24 h in vivo and 48 h in vitro. These conditions resulted in 31.3% conidia germination, 33.6% appressoria formation and 32.5% appressoria melanization in vitro, and 50.4% conidia germination and 9.5% appressoria formation in vivo. Fruit age also influenced these factors. As fruit age increased, conidia germination and appressoria formation gradually increased. Conidia germination and appressoria formation were 10.8% and 2.3%, respectively, in 10-day-old fruits. In 110-day-old fruits, conidia germination and appressoria formation were 42.5% and 23.2% respectively.
Resumo:
P>The aim of the work was to shed light into histological, physiological and molecular changes of Fagus sylvatica seedlings infected with the root pathogen Phytophthora citricola with the final goal to distinguish between local and systemic responses. Real-time quantitative PCR analysis proved that P. citricola was able to grow from infected roots into hypocotyl and epicotyl tissue of F. sylvatica seedlings. Light microscopy showed many collapsed parenchyma cells of the cortex without being penetrated by the pathogen. Hyphae were mainly growing intracellular in parenchyma and xylem tissue. Transmission electron microscopy displayed disintegration of xylem vessels and of parenchyma cells. Inhibition of water uptake of infected beech seedlings was positively correlated with the concentration of zoospores used in the experiment. In addition, a split root experiment indicated that invertases were possibly involved locally and systemically in the conversion of sucrose of P. citricola infected roots. During the growth of the pathogen in roots, a transient expression of the 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidase gene was quantified in leaves which was detected in parallel with the first peak of a biphasic ethylene outburst. Additionally a systemic upregulation of aquaporin transcripts was mainly detected in leaves of beech seedlings infected with P. citricola.
Resumo:
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research.
Resumo:
The investigation of the factors that interfere in the well-being of the elderly and their QoL can provide theoretical and methodological subsidies in structuring actions and policies in the health area, in order to fulfill the needs of that population. In this descriptive transversal study, body composition and QoL of elderly women at the UTA program in Piracicaba (Sao Paulo, Brazil) were verified. The participants were 81 women from UTA, and the general levels of physical activity were evaluated, as well as body weight (BW), height, and bodymass index (BMI). The waist circumference (WC) was measured at the level of the umbilical scar and the body composition by impedance (BIA 310e). QoL was verified by means of WHOQOL-Bref and statistical analysis developed with the SAS program. The decrease of weight, height, BMI, and fat-free mass (FFM) was observed among the several age groups, although with no significant difference. The average levels of the general QoL scores and physical, psychological and environmental domains decreased in higher age groups, but social domains showed the opposite result. This fact can be a particular characteristic of the UTA group, and factors the influence such behavior are yet to be studied. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Tests to determine the physiological potential of squash seeds. This work aimed to determine the efficiency of different tests to access the physiological potential of squash sced lots. Six seed lots were submitted to germination and vigor tests (germination first count; speed of germination; cool germination; accelerated aging; seedling emergence; seedlings growth and dry biomass (root, hypocotyl and total) and plants (root, stem and total length, root, stem, root plus stem, leaves and total). A completely randomized design was used with four replicates The averages were compared by the Tukey test (p <= 0.05). Pearson`s correlation test was also performed. The germination first count, speed of germination, accelerated aging, root plus stem and leaves dry biomass from plants evaluated in the 21(st) day after sowing can be used to determine the physiological potential of squash seeds.
Resumo:
Influence of soybean phenological stage and leaflets age on infection by Phakopsora pachyrhizi This work was conducted to study the influence of soybean growth stage and leaf age on the infection of Phakopsora pachyrhizi, the soybean rust pathogen. Soybean plants (cv. BRS 154 and BRS 258) at the V(3), R(1) and R(5) growth stages were inoculated with a 1 x 10(5) urediniospores per mL suspension. After a period of 24 hours in dew chambers, all plants were removed from the chambers and placed under greenhouse conditions for 20 days. Mean latent period (PLM) and disease severity were estimated. The susceptibility of trifoliate leaves to soybean rust was estimated on cv. BRS 154 at the growth stage R5. Pathogen inoculation was done at the first four trifoliate leaves. Fifteen days after inoculation, leaflets of each trefoil were evaluated for disease severity, lesion mean size and infection frequency. Plants` growth stage did not influence the PLM. Cultivars BRS 154 and BRS 258 presented PLM of 8 and 9 days, respectively. There was no difference in disease severity at the growth stages V(3) and R(1), but those values were higher than at the R(5) growth stage, 8 days after inoculation. The oldest trefoil showed the highest disease values.
Resumo:
Background: Cobalamin (Cbl) and folate deficiencies and gene polymorphism of key enzymes or carriers can impair homocysteine metabolism and may change the serum values of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). We investigated the nutritional and genetic determinants for total homocysteine (tHcy), methylmalonic acid (MMA) and SAM/SAH in healthy Brazilian childbearing-age women. Methods: Serum concentrations of Cbl, folate, red blood cell folate, ferritin, tHcy, MMA, SAM, SAH and other metabolites were measured in 102 healthy unrelated women. The genotypes for MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G, TC2 C776G, TC2 A67G and RFCI A80G gene polymorphisms were identified by PCR-RFLP. Results: Serum folate and Cbl were inversely correlated with tHcy and serum MMA, respectively. Cbl deficiency was associated with increased MMA and reduced alpha-aminobutyrate, serine and N-methylglycine concentrations. No variable was associated with SAM/SAH ratio. In addition, gene polymorphisms were not selected as determinants for tHcy, MMA and SAM/SAH ratio. Iron, Cbl and folate deficiencies were found respectively in 30.4%, 22.5% and 2.0% of individuals studied. Conclusions: There was a high frequency of Cbl and iron deficiency in this group of childbearing-age women. Serum folate and Cbl were the determinants of serum tHcy and MMA concentration, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712(T) were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37A degrees C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h(-1)) and the highest specific inulinase activity (1.65 U mg(-1) dry cell weight) among all strains investigated, when grown at 37A degrees C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose(-1)) was achieved by K. marxianus CBS 712(T) at 37A degrees C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.
Resumo:
Chemical compounds on the cuticle are a rich source of information used during interactions among social insects. Despite the multitude of studies on these substances and their function in ants, wasps, and honeybees, little is known about this subject in stingless bees (Hymenoptera: Apidae, Meliponini). We studied the chemical composition of the cuticle of the stingless bee, Frieseomelitta varia, by gas chromatography-mass spectrometry (GC-MS), to investigate potential chemical variation among castes, gender, age, and reproductive status. We found differences in the cuticular hydrocarbon composition among workers, males, and queens, recording both qualitative and quantitative differences among individuals of different ages and gender. The cuticle of physogastric queens presented a chemical profile that was distinct from all other groups in the analysis, with high relative abundances of alkenes and alkadienes with 27, 29, and 31 carbon atoms. We discuss the possibility that these compounds signal a queen`s presence to the colony, thereby initiating all vital worker-queen interactions.