922 resultados para phase behavior


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Annually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Nino events. During the period (AD) 1700-1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From (AD) 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Nino events increased during the mode switch. The onset of the AD 1700-1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several human genetic cataracts have been linked recently to point mutations in the γD crystallin gene. Here we provide a molecular basis for lens opacity in two genetic cataracts and suggest that the opacity occurs because of the spontaneous crystallization of the mutant proteins. Such crystallization of endogenous proteins leading to pathology is an unusual event. Measurements of the solubility curves of crystals of the Arg-58 to His and Arg-36 to Ser mutants of γD crystallin show that the mutations dramatically lower the solubility of the protein. Furthermore, the crystal nucleation rate of the mutants is enhanced considerably relative to that of the wild-type protein. It should be noted that, although there is a marked difference in phase behavior, there is no significant difference in protein conformation among the three proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In molecular biology, the expression of fusion proteins is a very useful and well-established technique for the identification and one-step purification of gene products. Even a short fused sequence of five or six histidines enables proteins to bind to an immobilized metal ion chelate complex. By synthesis of a class of chelator lipids, we have transferred this approach to the concept of self-assembly. The specific interaction and lateral organization of a fluorescent fusion molecule containing a C-terminal oligohistidine sequence was studied by film balance techniques in combination with epifluorescence microscopy. Due to the phase behavior of the various lipid mixtures used, the chelator lipids can be laterally structured, generating two-dimensional arrays of histidine-tagged biomolecules. Because of the large variety of fusion proteins already available, this concept represents a powerful technique for orientation and organization of proteins at lipid interfaces with applications in biosensing, biofunctionalization of nanostructured interfaces, two-dimensional crystallization, and studies of lipid-anchored proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The astronomical timescale of the Eastern Mediterranean Plio-Pleistocene builds on tuning of sapropel layers to Northern Hemisphere summer insolation maxima. A 3000-year precession lag has become instrumental in the tuning procedure as radiocarbon dating revealed that the midpoint of the youngest sapropel, S1, in the early Holocene occurred approximately 3000 years after the insolation maximum. The origin of the time lag remains elusive, however, because sapropels are generally linked to maximum African monsoon intensities and transient climate modeling results indicate an in-phase behavior of the African monsoon relative to precession forcing. Here we present new high-resolution records of bulk sediment geochemistry and benthic foraminiferal oxygen isotopes from ODP Site 968 in the Eastern Mediterranean. We show that the 3000-year precession time lag of the sapropel midpoints is consistent with (1) the global marine isotope chronology, (2) maximum (monsoonal) precipitation conditions in the Mediterranean region and China derived from radiometrically dated speleothem records, and (3) maximum atmospheric methane concentrations in Antarctica ice cores. We show that the time lag relates to the occurrence of precession-paced North Atlantic cold events, which systematically delayed the onset of strong boreal summer monsoon intensity. Our findings may also explain a non-stationary behavior of the African monsoon over the past 3 million years due to more frequent and intensive cold events in the Late Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-mixed blends of poly(ethylene) and poly(styrene) have been synthesized using supercritical carbon dioxide as a solvent. The morphology of the blends has been conclusively characterized using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), Raman microprobe microscopy, and C-13 solid-state cross-polarization magic angle spinning NMR (C-13 CPMAS NMR). DSC measurements demonstrate that poly(styrene) in the blends resides solely in the amorphous regions of the poly(ethylene) matrix; however, corroborative evidence from the SAXS experiments shows that poly(styrene) resides within the interlamellar spaces. The existence of nanometer-sized domains of poly(styrene) was shown within a blend of poly(styrene) and poly(ethylene) when formed in supercritical carbon dioxide using Raman microprobe microscopy and C-13 CPMAS NMR spectroscopy coupled with a spin diffusion model. This contrasts with blends formed at ambient pressure in the absence of solvent, in which domains of poly(styrene) in the micrometer size range are formed. This apparent improved miscibility of the two components was attributed to better penetration of the monomer prior to polymerization and increased swelling of the polymer substrate by the supercritical carbon dioxide solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we evaluate the performance of the 1- and 5-site models of methane on the description of adsorption on graphite surfaces and in graphitic slit pores. These models have been known to perform well in the description of the fluid-phase behavior and vapor-liquid equilibria. Their performance in adsorption is evaluated in this work for nonporous graphitized thermal carbon black, and simulation results are compared with the experimental data of Avgul and Kiselev (Chemistry and Physics of Carbon; Dekker: New York, 1970; Vol. 6, p 1). On this nonporous surface, it is found that these models perform as well on isotherms at various temperatures as they do on the experimental isosteric heat for adsorption on a graphite surface. They are then tested for their performance in predicting the adsorption isotherms in graphitic slit pores, in which we would like to explore the effect of confinement on the molecule packing. Pore widths of 10 and 20 angstrom are chosen in this investigation, and we also study the effects of temperature by choosing 90.7, 113, and 273 K. The first two are for subcritical conditions, with 90.7 K being the triple point of methane and 113 K being its boiling point. The last temperature is chosen to represent the supercritical condition so that we can investigate the performance of these models at extremely high pressures. We have found that for the case of slit pores investigated in this paper, although the two models yield comparable pore densities (provided the accessible pore width is used in the calculation of pore density), the number of particles predicted by the I-site model is always greater than that predicted by the 5-site model, regardless of whether temperature is subcritical or supercritical. This is due to the packing effect in the confined space such that a methane molecule modeled as a spherical particle in the I-site model would pack better than the fused five-sphere model in the case of the 5-site model. Because the 5-site model better describes the liquid- and solid-phase behavior, we would argue that the packing density in small pores is better described with a more detailed 5-site model, and care should be exercised when using the 1-site model to study adsorption in small pores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glycerate-based surfactants are a new class of swelling amphiphiles which swell to a finite degree with water. Among this class of surfactants, oleyl (cis-octadec-9-enyl) glycerate is very similar in structure to a well characterized mesophase-forming lipid, glyceryl monooleate (GMO). Despite the similar structural characteristics, a subtle change in connectivity of the ester bond substantially alters the binary surfactant-water phase behaviour. Whereas the phase behaviour of GMO is diverse and dominated by cubic phases, the phase behaviour of oleyl glycerate and a terpenoid analogue phytanyl (3,7,11,15-tetramethyl-hexadecane) glycerate is much simplified. Both exhibit an inverse hexagonal phase (H-II), which is stable to dilution with excess water, and an inverse micellar phase (L-II) at ambient temperatures. The inverse hexagonal phases formed by oleyl glycerate and phytanyl glycerate have been characterized using SAXS. Analogous to GMO cubosomes, the inverse hexagonal phase of phytanyl glycerate has been dispersed to form hexagonally facetted particles, termed hexosomes, whose structure has been verified using cryo-TEM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have harnessed two reactions catalyzed by the enzyme sortase A and applied them to generate new methods for the purification and site-selective modification of recombinant protein therapeutics.

We utilized native peptide ligation —a well-known function of sortase A— to attach a small molecule drug specifically to the carboxy-terminus of a recombinant protein. By combining this reaction with the unique phase behavior of elastin-like polypeptides, we developed a protocol that produces homogenously-labeled protein-small molecule conjugates using only centrifugation. The same reaction can be used to produce unmodified therapeutic proteins simply by substituting a single reactant. The isolated proteins or protein-small molecule conjugates do not have any exogenous purification tags, eliminating the potential influence of these tags on bioactivity. Because both unmodified and modified proteins are produced by a general process that is the same for any protein of interest and does not require any chromatography, the time, effort, and cost associated with protein purification and modification is greatly reduced.

We also developed an innovative and unique method that attaches a tunable number of drug molecules to any recombinant protein of interest in a site-specific manner. Although the ability of sortase A to carry out native peptide ligation is widely used, we demonstrated that Sortase A is also capable of attaching small molecules to proteins through an isopeptide bond at lysine side chains within a unique amino acid sequence. This reaction —isopeptide ligation— is a new site-specific conjugation method that is orthogonal to all available protein-small conjugation technologies and is the first site-specific conjugation method that attaches the payload to lysine residues. We show that isopeptide ligation can be applied broadly to peptides, proteins, and antibodies using a variety of small molecule cargoes to efficiently generate stable conjugates. We thoroughly assessed the site-selectivity of this reaction using a variety of analytical methods and showed that in many cases the reaction is site-specific for lysines in flexible, disordered regions of the substrate proteins. Finally, we showed that isopeptide ligation can be used to create clinically-relevant antibody-drug conjugates that have potent cytotoxicity towards cancerous cells

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microwave synthesis is shown to be a valuable route to novel fluorinated ionic liquid surfactants. 1-Methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium iodide was prepared by treatment of 1-methylimidazole with 1-iodo-1H,1H,2H,2H-perfluorohexane in a microwave reactor, and this product underwent anion exchange to yield 1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium nonafluoro-1-butanesulfonate. This catanionic surfactant showed intriguing phase behavior and low surface tension.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices.  One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction.  There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet.  These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects.  A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential.  In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides.  These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased.  A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies.  This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range.  Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron is a semi-metal present in certain types of soils and natural waters. It is essential to the healthy development of plants and non-toxic to humans, depending on its concentration. It is used in various industries and it s present in water production coming from oil production. More specifically in Rio Grande do Norte, one of the largest oil producers on shore of Brazil, the relationship water/oil in some fields becomes more than 90%. The most common destination of this produced water is disposal in open sea after processing to meet the legal specification. In this context, this research proposes to study the extraction of boron in water produced by microemulsion systems for industrial utilization. It was taken into account the efficiency of extraction of boron related to surfactant (DDA and OCS, both characterized by FT-IR), cosurfactant (butanol and isoamyl alcohol), organic phase (kerosene and heptanes) and aqueous phase (solution of boron 3.6 ppm in alkaline pH). The ratio cosurfactant/ surfactant used was four and the percentage of organic phases for all points of study was set at 5%. It was chosen points with the highest percentage of aqueous phase. Each system was designed for three points of different compositions in relation to the constituents of a pseudoternary diagram. These points were chosen according to studies of phase behavior in pseudoternary diagrams made in previous studies. For this research, points were chosen in the Winsor II region. The excess aqueous solution obtained in these systems was separated and analyzed by ICP OES. For the data set obtained, the better efficiency in the extraction of boron was obtained using the system with DAC, isoamyl alcohol and heptanes, which extracted 49% in a single step. OCS was not viable to the extraction of boron by microemulsion system in the conditions defined in this study