1000 resultados para pathogenic efficiency
Resumo:
Multidrug-resistant Escherichia colt sequence type 131 (51131) has recently emerged as a globally distributed cause of extraintestinal infections in humans. Diverse factors have been investigated as explanations for ST131's rapid and successful dissemination, including transmission through animal contact and consumption of food, as suggested by the detection of ST131 in a number of nonhuman species. For example, ST131 has recently been identified as a cause of clinical infection in companion animals and poultry, and both host groups have been confirmed as faecal carriers of ST131. Moreover, a high degree of similarity has been shown among certain ST131 isolates from humans, companion animals, and poultry based on resistance characteristics and genomic background and human and companion animal ST131 isolates tend to exhibit similar virulence genotypes. However, most ST131 isolates from poultry appear to possess specific virulence genes that are typically absent from human and companion animal isolates, including genes associated with avian pathogenic E. coli. Since the number of reported animal and food-associated ST131 isolates is quite small, the role of nonhuman host species in the emergence, dissemination, and transmission of ST131 to humans remains unclear. Nevertheless, given the profound public health importance of the emergent ST131 clonal group, even the limited available evidence indicates a pressing need for further careful study of this significant question.
Resumo:
The identification of Diaporthe (anamorph Phomopsis) species associated with stem canker of sunflower (Helianthus annuus) in Australia was studied using morphology, DNA sequence analysis and pathology. Phylogenetic analysis revealed three clades that did not correspond with known taxa, and these are believed to represent novel species. Diaporthe gulyae sp. nov. is described for isolates that caused a severe stem canker, specifically pale brown to dark brown, irregularly shaped lesions centred at the stem nodes with pith deterioration and mid-stem lodging. This pathogenicity of D. gulyae was confirmed by satisfying Koch's Postulates. These symptoms are almost identical to those of sunflower stem canker caused by D. helianthi that can cause yield reductions of up to 40% in Europe and the USA, although it has not been found in Australia. We show that there has been broad misapplication of the name D. helianthi to many isolates of Diaporthe ( Phomopsis) found causing, or associated with, stem cankers on sunflower. In GenBank, a number of isolates had been identified as D. helianthi, which were accommodated in several clades by molecular phylogenetic analysis. Two less damaging species, D. kochmanii sp. nov. and D. kongii sp. nov., are also described from cankers on sunflower in Australia.
Resumo:
Microfungi that cause disease or are associated with diseased plants in the wet tropics of northern Queensland are listed. A total of 206 host-pathogen combinations on 148 host species has been compiled from the results of plant disease surveys in the Wet Tropics World Heritage Area in 1992 and 1993, from herbarium records and from previously published host-pathogen combinations.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.
Resumo:
Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.
Resumo:
Presence of the dw3 sorghum dwarfing gene had negative effects on grain yield in some genetic backgrounds and environments. In a previous study we showed that this was due to a significant reduction in shoot biomass (mainly via reduced stem mass), which in turn negatively affected grain size. The current study examines whether shoot biomass was reduced via effects of dw3 on traits associated with resource capture, such as leaf area index (LAI), light interception (LI), and canopy extinction coefficient (k) or with resource use efficiency, such as radiation use efficiency (RUE). Three pairs of near-isogenic sorghum lines differing only in the presence or absence of the dwarfing allele dw3 (3-dwarfs vs 2-dwarfs) were grown in large field plots. Biomass accumulation and LI were measured for individual canopy layers to examine canopy characteristics of tall and short types. Similar to the previously reported effects on grain yield, the effects of dw3 on RUE, LI and k varied among genetic backgrounds and environments. Interactions between dw3 and genetic background, but also interactions with environment are likely to have modulated the extent to which RUE, LI, or k contributed to biomass differences between tall and short sorghum. © 2013 .
Resumo:
Four Alternaria species groups (A. longipes, A. arborescens, A. alternata/A. tenuissima and A. tenuissima/A. mali) are associated with leaf blotch and fruit spot of apple in Australia. There is no information on the variability of pathogenicity among the species and isolates within each species causing leaf blotch or fruit spot. We used a detached leaf assay and an in planta fruit inoculation assay to determine the pathogenicity and virulence of the four Alternaria species. Our results showed that isolates within the same species were not specific to either leaf or fruit tissue and showed great variability in pathogenicity and virulence, indicating cross-pathogenicity, which may be isolate dependent rather than species dependent. Generally, virulence of A. tenuissima and A. alternata isolates on leaf and fruit was higher than other species. Isolates of all species groups were pathogenic on leaves of different cultivars, but pathogenicity on fruit of different cultivars varied among isolates and species. Implications of our findings on prevalence of the diseases in different apple-producing regions in Australia and the development of targeted disease management of the diseases are discussed
Resumo:
The purpose of this study was to evaluate intensity, productivity and efficiency in agriculture in Finland and show implications for N and P fertiliser management. Environmental concerns relating to agricultural production have been and still are focused on arguments about policies that affect agriculture. These policies constrain production while demand for agricultural products such as food, fibre and energy continuously increase. Therefore the importance of increasing productivity is a great challenge to agriculture. Over the last decades producers have experienced several large changes in the production environment such as the policy reform when Finland joined the EU 1995. Other and market changes occurred with the further EU enlargement with neighbouring countries in 2005 and with the decoupling of supports over the 2006-2007 period. Decreasing prices a decreased number of farmers and decreased profitability in agricultural production have resulted from these changes and constraints and of technological development. It is known that the accession to the EU 1995 would herald changes in agriculture. Especially of interest was how the sudden changes in prices of commodities on especially those of cereals, decreased by 60%, would influence agricultural production. The knowledge of properties of the production function increased in importance as a consequence of price changes. A research on the economic instruments to regulate productions was carried out and combined with earlier studies in paper V. In paper I the objective was to compare two different technologies, the conventional farming and the organic farming, determine differences in productivity and technical efficiency. In addition input specific or environmental efficiencies were analysed. The heterogeneity of agricultural soils and its implications were analysed in article II. In study III the determinants of technical inefficiency were analysed. The aspects and possible effects of the instability in policies due to a partial decoupling of production factors and products were studied in paper IV. Consequently connection between technical efficiency based on the turnover and the sales return was analysed in this study. Simple economic instruments such as fertiliser taxes have a direct effect on fertiliser consumption and indirectly increase the value of organic fertilisers. However, fertiliser taxes, do not fully address the N and P management problems adequately and are therefore not suitable for nutrient management improvements in general. Productivity of organic farms is lower on average than conventional farms and the difference increases when looking at selling returns only. The organic sector needs more research and development on productivity. Livestock density in organic farming increases productivity, however, there is an upper limit to livestock densities on organic farms and therefore nutrient on organic farms are also limited. Soil factors affects phosphorous and nitrogen efficiency. Soils like sand and silt have lower input specific overall efficiency for nutrients N and P. Special attention is needed for the management on these soils. Clay soils and soils with moderate clay content have higher efficiency. Soil heterogeneity is cause for an unavoidable inefficiency in agriculture.
Resumo:
This thesis studies the informational efficiency of the European Union emission allowance (EUA) market. In an efficient market, the market price is unpredictable and profits above average are impossible in the long run. The main research problem is does the EUA price follow a random walk. The method is an econometric analysis of the price series, which includes an autocorrelation coefficient test and a variance ratio test. The results reveal that the price series is autocorrelated and therefore a nonrandom walk. In order to find out the extent of predictability, the price series is modelled with an autoregressive model. The conclusion is that the EUA price is autocorrelated only to a small degree and that the predictability cannot be used to make extra profits. The EUA market is therefore considered informationally efficient, although the price series does not fulfill the requirements of a random walk. A market review supports the conclusion, but it is clear that the maturing of the market is still in process.
Resumo:
The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.
Resumo:
The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses.