943 resultados para near optical axis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and simple route for near-infrared (NIR)-light controlled release of drugs has been demonstrated using graphene oxide (GO) composite microcapsules based on the unique optical properties of GO. Upon NIR-laser irradiation, the microcapsules were ruptured in a point-wise fashion due to local heating which in turn triggers the light-controlled release of the encapsulated anticancer drug doxorubicin (Dox) from these capsules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructural evolution was studied in a near-lamellar two phase (alpha(2) + gamma) Ti-47Al-2Cr-2Nb alloy under high temperature creep and exposure conditions. The aim of this study was to probe the role of stress orientation, with respect to lamellar plates, on microstructural changes during primary creep. Creep testing was complemented with SEM and TEM based microstructural characterization. It was observed that retention of excess alpha(2) resulted in an unstable microstructure. Under stress and temperature, excess alpha(2) was lost and Cr-rich precipitates formed. Depending on stress orientation, the sequence of precipitates formed was different. alpha(2) loss was accompanied by formation of the non-equilibrium C14 Laves phase when lamellar plates were oriented parallel to the stress axis. In contrast, alpha(2) loss did not result in formation of the C14 phase in perpendicular samples. It was concluded that C14 formed preferentially in certain test orientations because of its effectiveness in relieving residual stresses in alpha(2) that arose from lattice misfit and modulus mismatch. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 x 10(-4)/s to 10(2)/s and three temperatures RT, 373 K, and 473 K (100 A degrees C and 200 A degrees C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 mu m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and implementation of a reorientable scanning probe that is capable of two-axis force sensing and control in the 2-D scanning (X-Z) plane. The probe is comprised of three major components, namely a compliant manipulator, laser measurement system, and magnetic actuation system. Control of the position and orientation of the probe tip is realized by means of magnetic actuation combined with a novel structural design. The design of the manipulator's compliance and that of the optical path of the laser measurement system together enable achieving sensitivity to lateral (X) forces that is nearly identical to that of normal (Z) forces. The achieved sensitivity ratio, of about 0.6, is significantly higher than that of conventional scanning probe systems. The theoretical bases for the structural design and the sensitivity of the two-axis force sensing system are presented. Subsequently, fabrication of the manipulator is described and the result of experimental evaluation of the scanning probe's features is discussed. The scanning probe is used to access the vertical and re-entrant features on the two sides of a cylindrical micropipette, which are subsequently scanned by regulating the lateral force of tip-sample interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the nature of coupled phonons in mixed crystal of Cs-0.9(NH4)(0.1)H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60-1100 cm(-1). The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v(1)) and antisymmetric (v(3)) stretching vibrations associated with AsO4 tetrahedra below transition temperature (T-c(*) similar to 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v(4) (S9, S11) and v(2) (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at similar to 92 cm(-1) shows anomalous blue shift (similar to 12 %) from 300 K to 5 K with no sharp transition near T-c(*) unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode. (C) 2013 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thin films of Cu2ZnSnS4 (CZTS) were grown by co-sputtering further the structural, optical and electrical properties were analyzed and confirmed the CZTS phase formation. The photo response of CZTS in near IR photodectection has been demonstrated. The detector response was measured employing both the IR lamp and IR laser illuminations. The calculated growth and decay constants were 130 m sec and 700 m sec followed by the slower components upon lamp illumination. The external quantum efficiency of 15%, responsivity of 13 AW(-1) makes CZTS a suitable candidate for the IR photodectection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The proposed method was compared with the recently established data-resolution matrix-based approach for optimal choice of independent measurements and shown, using simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regularization parameter for providing the same information. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)