962 resultados para micro-pressure wave


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A separated oblique shock reflection on the floor of a rectangular cross-section wind tunnel has been investigated at M=2.5. The study aims to determine if and how separations occurring in the corners influence the main interaction as observed around the centreline of the floor. By changing the size of the corner separations through localised suction and small corner obstructions it was shown that the shape of the separated region in the centre was altered considerably. The separation length along the floor centreline was also modified by changes to the corner separation. A simple physical model has been proposed to explain the coupling between these separated regions based on the existence of compression or shock waves caused by the displacement effect of corner separation. These corner shocks alter the adverse pressure gradient imposed on the boundary-layer elsewhere which can lead to local reductions or increases of separation length. It is suggested that a typical oblique shock wave/boundary-layer interaction in rectangular channels features several zones depending on the relative position of the corner shocks and the main incident shock wave. Based on these findings the dependence of centre-line separation length on effective wind tunnel width is hypothesised. This requires further verification through experiments or computation. © 2013 by H. Babinsky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the ground exciton energy pressure coefficients of self-assembled InAs/GaAs quantum dots by calculating 21 systems with different quantum dot shape, size, and alloying profile using the atomistic empirical pseudopotential method. Our results confirm the experimentally observed significant reductions of the exciton energy pressure coefficients from the bulk values. We show that the nonlinear pressure coefficients of the bulk InAs and GaAs are responsible for these reductions, and the percentage of the electron wave function on top of GaAs atoms is responsible for the variation of this reduction. We also find a pressure coefficient versus exciton energy relationship which agrees quantitatively with the experimental results. We find linear relationships which can be used to get the information of the electron wave functions from exciton energy pressure coefficient measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization-independent laterally-coupled micro-ring resonator has been designed and demonstrated. The origin of the polarization-sensitivity of the photonic wire waveguide (PWW) was analyzed. A polarization-insensitive PWW structure was designed and a polarization-insensitive MRR based on this PWW structure was designed by finite difference time-domain method and was fabricated on an 8-inch silicon-on-insulator wafer. The offset between the resonant wavelengths of the quasi-TE mode and the quasi-TM mode is smaller than 0.15 nm. The FSR is about 17 nm, extinction ratio about 10 dB and Q about 620.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a pressure-gradient fiber laser hydrophone is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as sensing elements. A distributed feedback fiber laser, fixed at the center of the two diaphragms, is elongated or shortened due to the acoustic wave. There are two orifices at the middle of the cylinder. So this structure can work as a pressure-gradient microphone in the acoustic field. Furthermore, the hydrostatic pressure is self-compensated and an ultra-thin dimension is achieved. Theoretical analysis is given based on the electro-acoustic theory. Field trials are carried out to test the performance of the hydrophone. A sensitivity of 100 nm MPa-1 has been achieved. Due to the small dimensions, no directivity is found in the test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence of InxGa1-xAs/GaAs strained quantum wells with widths of 30 angstrom to 160 angstrom have been studied at 77 K under hydrostatic pressure up to 60 kbar. It is found that the pressure coefficients of exciton peaks from 1st conduction subband to heavy hole subband increase from 9.74 meV/kbar for a 160 angstrom well to 10.12 meV/kbar for a 30 angstrom well. The calculation based on the Kronig-Penney model indicated that the extension of the electronic wave function to the barrier layer in the narrow wells is one of the reasons for the increase of the pressure coefficients with the decrease of well width. Two peaks related to indirect transitions were observed at pressures higher than 50 kbar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology of "explosion in fractures" is one of new synthetic engineering methods used in low permeability reservoirs. The most important problem arose from the technology is to assess the deflagration propagation capability of milky explosives in rock fractures. In order to investigate detailed this problem in the laboratory, an experimental setup was designed and developed in which different conditions can be simulated. The experimental setup mainly includes two parts. One is the experimental part and the other is the measurement part. In the experimental setup, the narrow slots with different width can be simulated; meanwhile, different initial pressures and initial temperatures can be loaded on the explosives inside the narrow slots. The initial pressure range is from 0-60 MPa, and the initial temperatures range is from room temperature to 100 V. The temperature and the velocity of deflagration wave can be measured; meanwhile the corresponding pressure in the narrow slot is also measured. In the end, some typical measurement results are briefly presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure (W0.4Al0.6)C powder of about 1 mu m in diameter was sintered by the high pressure sintering (HPS) process without the addition of any binder phase. The microstructure, Vickers micro hardness and density versus the sintering time and temperature are well described. The most suitable sintering condition under pressure of 4.5 GPa is 1873 K for 8 min. Under this sintering condition, the hardness can reach 2295 kg mm(-2) and the relative density can reach 98.6%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.