964 resultados para mechanical methods
Resumo:
An evaluation of existing 1-D vaneless diffuser design tools in the context of improving the off-design performance prediction of automotive turbocharger centrifugal compressors is described. A combination of extensive gas stand test data and single passage CFD simulations have been employed in order to permit evaluation of the different methods, allowing conclusions about the relative benefits and deficiencies of each of the different approaches to be determined. The vaneless diffuser itself has been isolated from the incumbent limitations in the accuracy of 1-D impeller modelling tools through development of a method to fully specify impeller exit conditions (in terms of mean quantities) using only standard test stand data with additional interstage static pressure measurements at the entrance to the diffuser. This method allowed a direct comparison between the test data and 1-D methods through sharing common inputs, thus achieving the aim of diffuser isolation.
Crucial to the accuracy of determining the performance of each of the vaneless diffuser configurations was the ability to quantify the presence and extent of the spanwise aerodynamic blockage present at the diffuser inlet section. A method to evaluate this critical parameter using CFD data is described herein, along with a correlation for blockage related to a new diffuser inlet flow parameter ⚡, equal to the quotient of the local flow coefficient and impeller tip speed Mach number. The resulting correlation permitted the variation of blockage with operating condition to be captured.
Resumo:
Background:
Prolonged mechanical ventilation is associated with a longer intensive care unit (ICU) length of stay and higher mortality. Consequently, methods to improve ventilator weaning processes have been sought. Two recent Cochrane systematic reviews in ICU adult and paediatric populations concluded that protocols can be effective in reducing the duration of mechanical ventilation, but there was significant heterogeneity in study findings. Growing awareness of the benefits of understanding the contextual factors impacting on effectiveness has encouraged the integration of qualitative evidence syntheses with effectiveness reviews, which has delivered important insights into the reasons underpinning (differential) effectiveness of healthcare interventions.
Objectives:
1. To locate, appraise and synthesize qualitative evidence concerning the barriers and facilitators of the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
2. To integrate this synthesis with two Cochrane effectiveness reviews of protocolized weaning to help explain observed heterogeneity by identifying contextual factors that impact on the use of protocols for weaning critically-ill adults and children from mechanical ventilation;
3. To use the integrated body of evidence to suggest the circumstances in which weaning protocols are most likely to be used.
Search methods:
We used a range of search terms identified with the help of the SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) mnemonic. Where available, we used appropriate methodological filters for specific databases. We searched the following databases: Ovid MEDLINE, Embase, OVID, PsycINFO, CINAHL Plus, EBSCOHost, Web of Science Core Collection, ASSIA, IBSS, Sociological Abstracts, ProQuest and LILACS on the 26th February 2015. In addition, we searched: the grey literature; the websites of professional associations for relevant publications; and the reference lists of all publications reviewed. We also contacted authors of the trials included in the effectiveness reviews as well as of studies (potentially) included in the qualitative synthesis, conducted citation searches of the publications reporting these studies, and contacted content experts.
We reran the search on 3rd July 2016 and found three studies, which are awaiting classification.
Selection criteria:
We included qualitative studies that described: the circumstances in which protocols are designed, implemented or used, or both, and the views and experiences of healthcare professionals either involved in the design, implementation or use of weaning protocols or involved in the weaning of critically-ill adults and children from mechanical ventilation not using protocols. We included studies that: reflected on any aspect of the use of protocols, explored contextual factors relevant to the development, implementation or use of weaning protocols, and reported contextual phenomena and outcomes identified as relevant to the effectiveness of protocolized weaning from mechanical ventilation.
Data collection and analysis:
At each stage, two review authors undertook designated tasks, with the results shared amongst the wider team for discussion and final development. We independently reviewed all retrieved titles, abstracts and full papers for inclusion, and independently extracted selected data from included studies. We used the findings of the included studies to develop a new set of analytic themes focused on the barriers and facilitators to the use of protocols, and further refined them to produce a set of summary statements. We used the Confidence in the Evidence from Reviews of Qualitative Research (CERQual) framework to arrive at a final assessment of the overall confidence of the evidence used in the synthesis. We included all studies but undertook two sensitivity analyses to determine how the removal of certain bodies of evidence impacted on the content and confidence of the synthesis. We deployed a logic model to integrate the findings of the qualitative evidence synthesis with those of the Cochrane effectiveness reviews.
Main results:
We included 11 studies in our synthesis, involving 267 participants (one study did not report the number of participants). Five more studies are awaiting classification and will be dealt with when we update the review.
The quality of the evidence was mixed; of the 35 summary statements, we assessed 17 as ‘low’, 13 as ‘moderate’ and five as ‘high’ confidence. Our synthesis produced nine analytical themes, which report potential barriers and facilitators to the use of protocols. The themes are: the need for continual staff training and development; clinical experience as this promotes felt and perceived competence and confidence to wean; the vulnerability of weaning to disparate interprofessional working; an understanding of protocols as militating against a necessary proactivity in clinical practice; perceived nursing scope of practice and professional risk; ICU structure and processes of care; the ability of protocols to act as a prompt for shared care and consistency in weaning practice; maximizing the use of protocols through visibility and ease of implementation; and the ability of protocols to act as a framework for communication with parents.
Authors' conclusions:
There is a clear need for weaning protocols to take account of the social and cultural environment in which they are to be implemented. Irrespective of its inherent strengths, a protocol will not be used if it does not accommodate these complexities. In terms of protocol development, comprehensive interprofessional input will help to ensure broad-based understanding and a sense of ‘ownership’. In terms of implementation, all relevant ICU staff will benefit from general weaning as well as protocol-specific training; not only will this help secure a relevant clinical knowledge base and operational understanding, but will also demonstrate to others that this knowledge and understanding is in place. In order to maximize relevance and acceptability, protocols should be designed with the patient profile and requirements of the target ICU in mind. Predictably, an under-resourced ICU will impact adversely on protocol implementation, as staff will prioritize management of acutely deteriorating and critically-ill patients.
Resumo:
Background
Mechanical ventilation is a life-saving intervention for critically ill newborn infants with respiratory failure admitted to a neonatal intensive care unit (NICU). Ventilating newborn infants can be challenging due to small tidal volumes, high breathing frequencies, and the use of uncuffed endotracheal tubes. Mechanical ventilation has several short-term, as well as long-term complications. To prevent complications, weaning from the ventilator is started as soon as possible. Weaning aims to support the transfer from full mechanical ventilation support to spontaneous breathing activity.
Objectives
To assess the efficacy of protocolized versus non-protocolized ventilator weaning for newborn infants in reducing the duration of invasive mechanical ventilation, the duration of weaning, and shortening the NICU and hospital length of stay. To determine efficacy in predefined subgroups including: gestational age and birth weight; type of protocol; and type of protocol delivery. To establish whether protocolized weaning is safe and clinically effective in reducing the duration of mechanical ventilation without increasing the risk of adverse events.
Search methods
We searched the Cochrane Central Register of Controlled trials (CENTRAL; the Cochrane Library; 2015, Issue 7); MEDLINE In-Process and other Non-Indexed Citations and OVID MEDLINE (1950 to 31 July 2015); CINAHL (1982 to 31 July 2015); EMBASE (1988 to 31 July 2015); and Web of Science (1990 to 15 July 2015). We did not restrict language of publication. We contacted authors of studies with a subgroup of newborn infants in their study, and experts in the field regarding this subject. In addition, we searched abstracts from conference proceedings, theses, dissertations, and reference lists of all identified studies for further relevant studies.
Selection criteria
Randomized, quasi-randomized or cluster-randomized controlled trials that compared protocolized with non-protocolized ventilator weaning practices in newborn infants with a gestational age of 24 weeks or more, who were enrolled in the study before the postnatal age of 28 completed days after the expected date of birth.
Data collection and analysis
Four authors, in pairs, independently reviewed titles and abstracts identified by electronic searches. We retrieved full-text versions of potentially relevant studies.
Main results
Our search yielded 1752 records. We removed duplicates (1062) and irrelevant studies (843). We did not find any randomized, quasi-randomized or cluster-randomized controlled trials conducted on weaning from mechanical ventilation in newborn infants. Two randomized controlled trials met the inclusion criteria on type of study and type of intervention, but only included a proportion of newborns. The study authors could not provide data needed for subgroup analysis; we excluded both studies.
Authors' conclusions
Based on the results of this review, there is no evidence to support or refute the superiority or inferiority of weaning by protocol over non-protocol weaning on duration of invasive mechanical ventilation in newborn infants.
Resumo:
Introduction: Fewer than 50% of adults and 40% of youth meet US CDC guidelines for physical activity (PA) with the built environment (BE) a culprit for limited PA. A challenge in evaluating policy and BE change is the forethought to capture a priori PA behaviors and the ability to eliminate bias in post-change environments. The present objective was to analyze existing public data feeds to quantify effectiveness of BE interventions. The Archive of Many Outdoor Scenes (AMOS) has collected 135 million images of outdoor environments from 12,000 webcams since 2006. Many of these environments have experienced BE change. Methods: One example of BE change is the addition of protected bike lanes and a bike share program in Washington, DC.Weselected an AMOS webcam that captured this change. AMOS captures a photograph from eachwebcamevery half hour.AMOScaptured the 120 webcam photographs between 0700 and 1900 during the first work week of June 2009 and the 120 photographs from the same week in 2010. We used the Amazon Mechanical Turk (MTurk) website to crowd-source the image annotation. MTurk workers were paid US$0.01 to mark each pedestrian, cyclist and vehicle in a photograph. Each image was coded 5 unique times (n=1200). The data, counts of transportation mode, was downloaded to SPSS for analysis. Results: The number of cyclists per scene increased four-fold between 2009 and 2010 (F=36.72, p=0.002). There was no significant increase in pedestrians between the two years, however there was a significant increase in number of vehicles per scene (F=16.81, p
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2008
Resumo:
The characteristics of carbon fibre reinforced laminates had widened their use, from aerospace to domestic appliances. A common characteristic is the need of drilling for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, delamination assessment methods based on radiographic data are compared and correlated with mechanical test results (bearing test).
Resumo:
Nanosized ZnFe2O4 particles containing traces of a-Fe2O3 by intent were produced by low temperature chemical coprecipitation methods. These particles were subjected to high-energy ball milling. These were then characterised using X-ray diffraction, magnetisation and dielectric studies. The effect of milling on zinc ferrite particles have been studied with a view to ascertaining the anomalous behaviour of these materials in the nanoregime. X-ray diffraction and magnetisation studies carried out show that these particles are associated with strains and it is the surface effects that contribute to the magnetisation. Hematite percentage, probably due to decomposition of zinc ferrite, increases with milling. Dielectric behaviour of these particles is due to interfacial polarisation as proposed by Koops. Also the defects caused by the milling produce traps in the surface layer contributes to dielectric permittivity via spin polarised electron tunnelling between grains. The ionic mechanism is enhanced in dielectrics with the rise in temperature which results in the increase of dielectric permittivity with temperature.
Resumo:
The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.
Resumo:
The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time.
Resumo:
Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave-polymerised (Onda-Cryl) and two heat-polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers` instructions. Fifty rectangular-shaped specimens (8 x 10 x 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver-zinc zeolite (0%- control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one-way ANOVA and Tukey`s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda-Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda-Cryl) of zeolite. Conclusion: The addition of silver-zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.