871 resultados para meaning reconstruction
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
Resumo:
PURPOSE: To evaluate the cause of recurrent pathologic instability after anterior cruciate ligament (ACL) surgery and the effectiveness of revision reconstruction using a quadriceps tendon autograft using a 2-incision technique. TYPE OF STUDY: Retrospective follow-up study. METHODS: Between 1999 and 2001, 31 patients underwent ACL revision reconstruction because of recurrent pathologic instability during sports or daily activities. Twenty-eight patients were reviewed after a mean follow-up of 4.2 years (range, 3.3 to 5.6 years). The mean age at revision surgery was 27 years (range, 18 to 41 years). The average time from primary procedure to revision surgery was 26 months (range, 9 to 45 months). A clinical, functional, and radiographic evaluation was performed. Also magnetic resonance imaging (MRI) or computed tomography (CT) scanning was performed. The International Knee Documentation Committee (IKDC), Lysholm, and Tegner scales were used. A KT-1000 arthrometer measurement (MEDmetric, San Diego, CA) by an experienced physician was made. RESULTS: Of the failures, 79% had radiographic evidence of malposition of their tunnels. In only 6 cases (21%) was the radiologic anatomy of tunnel placement judged to be correct on both the femoral and tibial side. The MRI or CT showed, in 6 cases, a too-centrally placed femoral tunnel. After revision surgery, the position of tunnels was corrected. A significant improvement of Lachman and pivot-shift phenomenon was observed. In particular, 17 patients had a negative Lachman test, and 11 patients had a grade I Lachman with a firm end point. Preoperatively, the pivot-shift test was positive in all cases, and at last follow-up in 7 patients (25%) a grade 1+ was found. Postoperatively, KT-1000 testing showed a mean manual maximum translation of 8.6 mm (SD, 2.34) for the affected knee; 97% of patients had a maximum manual side-to-side translation <5 mm. At the final postoperative evaluation, 26 patients (93%) graded their knees as normal or nearly normal according to the IKDC score. The mean Lysholm score was 93.6 (SD, 8.77) and the mean Tegner activity score was 6.1 (SD, 1.37). No patient required further revision. Five patients (18%) complained of hypersensitive scars from the reconstructive surgery that made kneeling difficult. CONCLUSIONS: There were satisfactory results after ACL revision surgery using quadriceps tendon and a 2-incision technique at a minimum 3 years' follow-up; 93% of patients returned to sports activities. LEVEL OF EVIDENCE: Level IV, case series, no control group.
Resumo:
BACKGROUND: Outcome following foot and ankle surgery can be assessed by disease- and region-specific scores. Many scoring systems exist, making comparison among studies difficult. The present study focused on outcome measures for a common foot and ankle abnormality and compared the results obtained by 2 disease-specific and 2 body region-specific scores. METHODS: We reviewed 41 patients who underwent lateral ankle ligament reconstruction. Four outcome scales were administered simultaneously: the Cumberland Ankle Instability Tool (CAIT) and the Chronic Ankle Instability Scale (CAIS), which are disease specific, and the American Orthopedic Foot & Ankle Society (AOFAS) hindfoot scale and the Foot and Ankle Ability Measure (FAAM), which are both body region-specific. The degree of correlation between scores was assessed by Pearson's correlation coefficient. Nonparametric tests, the Kruskal-Wallis and the Mann-Whitney test for pairwise comparison of the scores, were performed. RESULTS: A significant difference (P < .005) was observed between the CAIS and the AOFAS score (P = .0002), between the CAIS and the FAAM 1 (P = .0001), and between the CAIT and the AOFAS score (P = .0003). CONCLUSIONS: This study compared the performances of 4 disease- and body region-specific scoring systems. We demonstrated a correlation between the 4 administered scoring systems and notable differences between the results given by each of them. Disease-specific scores appeared more accurate than body region-specific scores. A strong correlation between the AOFAS score and the other scales was observed. The FAAM seemed a good compromise because it offered the possibility to evaluate the patient according to his or her own functional demand. CLINICAL RELEVANCE: The present study contributes to the development of more critical and accurate outcome assesment methods in foot and ankle surgery.
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes.
Resumo:
Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.