907 resultados para mass-selected low energy ion beam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente, com o crescimento exponencial das tecnologias de comunicação móveis, cada vez mais existe uma utilização generalizada de dispositivos móveis que adotam normas de última geração para redes de área corporal (BAN), como o Bluetooth Low Energy. Estas normas vieram revolucionar a monitorização de parâmetros vitais, permitindo que esta seja efetuada em qualquer lugar e momento e que ocorra uma redução do consumo energético. Se tivermos em consideração as doenças mais causadoras de morte, a tendência de envelhecimento da população e a dificuldade de acesso e acompanhamento médico por parte de pacientes com incapacidades, a monitorização remota de parâmetros vitais surge como um auxiliar clínico para um diagnóstico melhor, mais rápido e mais fiável. O presente projeto tem como objetivo especificar uma arquitetura para monitorização remota de parâmetros vitais no sentido de criar uma solução pronta a usar, simples, eficiente, segura, de baixo custo e compatível com dispositivos móveis de última geração. A monitorização remota será efetuada com recurso ao dispositivo móvel, que o paciente já possui, através de uma aplicação que atua como intermediária entre os sensores biofísicos que efetuam a recolha de dados vitais e a plataforma onde estes serão armazenados. Após o envio dos dados para a plataforma é possível o seu acesso pelos profissionais de saúde para que assim os tenham em consideração ao efetuar diagnósticos. Os testes realizados mostram a facilidade e simplicidade de utilização do sistema, fatores muito importantes, bem como a fiabilidade na leitura de parâmetros vitais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente, com o crescimento exponencial das tecnologias de comunicação móveis, cada vez mais existe uma utilização generalizada de dispositivos móveis que adotam normas de última geração para redes de área corporal (BAN), como o Bluetooth Low Energy. Estas normas vieram revolucionar a monitorização de parâmetros vitais, permitindo que esta seja efetuada em qualquer lugar e momento e que ocorra uma redução do consumo energético. Se tivermos em consideração as doenças mais causadoras de morte, a tendência de envelhecimento da população e a dificuldade de acesso e acompanhamento médico por parte de pacientes com incapacidades, a monitorização remota de parâmetros vitais surge como um auxiliar clínico para um diagnóstico melhor, mais rápido e mais fiável. O presente projeto tem como objetivo especificar uma arquitetura para monitorização remota de parâmetros vitais no sentido de criar uma solução pronta a usar, simples, eficiente, segura, de baixo custo e compatível com dispositivos móveis de última geração. A monitorização remota será efetuada com recurso ao dispositivo móvel, que o paciente já possui, através de uma aplicação que atua como intermediária entre os sensores biofísicos que efetuam a recolha de dados vitais e a plataforma onde estes serão armazenados. Após o envio dos dados para a plataforma é possível o seu acesso pelos profissionais de saúde para que assim os tenham em consideração ao efetuar diagnósticos. Os testes realizados mostram a facilidade e simplicidade de utilização do sistema, fatores muito importantes, bem como a fiabilidade na leitura de parâmetros vitais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron beam lithography (EBL) and focused ion beam (FIB) methods were developed in house to fabricate nanocrystalline nickel micro/nanopillars so to compare the effect of fabrication on plastic yielding. EBL was used to fabricate 3 μm and 5 μm thick poly-methyl methacrylate patterned substrates in which nickel pillars were grown by electroplating with height to diameter aspect ratios from 2:1 to 5:1. FIB milling was used to reduce larger grown pillars to sizes similar to EBL grown pillars. X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and FIB imaging were used to characterize the nickel pillars. The measured grain size of the pillars was 91±23 nm, with strong <110> and weaker <111> and <110> crystallographic texture in the growth. Load-controlled compression tests were conducted using a MicroMaterials nano-indenter equipped with a 10 μm flat punch at constant rates from 0.0015 to 0.03 mN/s on EBL grown pillars, and 0.0015 and 0.015 mN/s on FIB-milled pillars. The measured Young’s modulus ranged from 55 to 350 GPa for all pillars, agreeing with values in the literature. EBL grown pillars exhibited stochastic strain-bursts at slow loading rates, attributed to local micro yield events, followed by work hardening. Sharp yield points were also observed and attributed to the gold seed layer de-bonding between the nickel pillar and substrate due to the shear stress associated with end effects that arise from the substrate constraint. The onset of yield ranged from 108 to 1800 MPa, which is greater than bulk nickel, but within values given in the literature. FIB-milled pillars demonstrated stochastic yield behaviour at all loading rates tested, yielding between 320 and 625 MPa. Deformation was apparent at FIB-milled pillar tops, where the smallest cross-sectional area was measured, but still exhibited superior yield strength to bulk nickel. The gallium damage at the outer surface of the pillars likely aids in dislocation nucleation and plasticity, leading to lower yield strengths than for the EBL pillars. Thermal drift, substrate effects, and noise due to vibrations within the indenter system contributed to variance and inconsistency in the data.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As we reach the physical limit of Moore’s law and silicon based electronics, alternative schemes for memory and sensor devices are being proposed on
a regular basis. The properties of ferroelectric materials on the nanoscale are key to developing device applications of this intriguing material class, and nanostructuring has been readily pursued in recent times. Focused ion beam (FIB) microscopy is one of the most signi cant techniques for achieving
this. When applied in tandem with the imaging and nanoscale manipulation afforded by proximal scanning force microscopy tools, FIB-driven nanoscale characterization has demonstrated the power and ability which simply may not be possible by other fabrication techniques in the search for innovative and novel ferroic phenomena. At the same time the process is not without pitfalls; it is time-consuming and success is not always guaranteed thus often being the bane in progress. This balanced review explores a brief history of the relationship between the FIB and ferroelectrics, the fascinating properties it has unveiled, the challenges associated with FIB that have led to alterna- tive nanostructuring techniques and nally new ideas that should be explored using this exciting technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.