876 resultados para markovitz optimization
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica
Optimization of fMRI Processing Parameters for Simutaneous Acquisition of EEG/fMRI in Focal Epilepsy
Resumo:
In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Tese apresentada para obtenção do Grau de Doutor em Engenharia Civil na especialidade de Reabilitação do Património Edificado, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Optimization of the RAPD reaction for characterizing Salmonella enterica serovar Typhi strains was studied in order to ensure the reproducibility and the discriminatory power of this technique. Eight Salmonella serovar Typhi strains isolated from various regions in Brazil were examined for the fragment patterns produced using different concentrations of DNA template, primer, MgCl2 and Taq DNA polymerase. Using two different low stringency thermal cycle profiles, the RAPD fingerprints obtained were compared. A set of sixteen primers was evaluated for their ability to produce a high number of distinct fragments. We found that variations associated to all of the tested parameters modified the fingerprinting patterns. For the strains of Salmonella enterica serovar Typhi used in this experiment, we have defined a set of conditions for RAPD-PCR reaction, which result in a simple, fast and reproducible typing method.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.