962 resultados para magneto-optical effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on a GaAs/GaAlAs MQW pin structure grown by a home-made MBE system, we have successfully fabricated a SEED. The optical bistability and related properties of the device under symmetric operation (S-SEED) and asymmetric operation are reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells and GaInNAs epilayers grown on GaAs substrate show an apparent "S-shape" temperature-dependence of the of dominant luminescence peak. At low temperature and weak excitation conditions, a PL peak related to nitrogen cluster-induced bound states can be well resolved in the PL spectra. It displays a remarkable red shift of up to 60 meV and is thermally quenched below 100 K with increasing temperature, being attributed to N-cluster induced bound states. The indium incorporation exhibits significant effect on the cluster formation. The rapid thermal annealing treatment at 750 C can essentially remove the bound states-induced peak.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (similar to 445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three distyrylbenzene (DSB) derivatives were vacuum-evaporated on a (001) surface of KBr. DSB derivative molecules formed nuclei by interaction between the electron donative methoxyl group and Br- ion of the substrate crystal and oriented their longitudinal axis obliquely to the substrate surface. The peak shift between the emission peaks of solution and film decreased depending on the number of substituent. This phenomenon was originated to reduction of molecular interaction between neighboring molecules by steric hindrance of end substituents. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work probes the role of hydrogen bonds (such as O-H ... O and N-H ... O) in some inorganic nonlinear optical (NLO) crystals, such as HIO3, NH4H2PO4 (ADP), K[B5O6(OH)(4)] . 2H(2)O (KB5) and K2La(NO3)(5) . 2H(2)O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of LiNbO3 have been investigated. The single-bond contributions to the second-order NLO susceptibility and the linear susceptibility were determined. The tensor values thus calculated are in good agreement with experimental data. Based on theoretical results of LiNbO3 with Li/Nb = 1, we also have calculated linear and nonlinear optical properties of nonstoichiometric samples with Li/Nb < 1. In the calculation, we find that the Li-O bond is an important type of chemical bond in these LiNbO3 samples, which have large NLO contributions to the total nonlinearities. The refractive indices and second-order NLO tensor coefficients have been determined as a function of the stoichiometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is found that in the fast atom bombardment (FAB) mass spectra R-alpha-phenylethylamine and S-alpha-phenylethylamine can be clearly distinguished by S-1,1'-binaphthyl-2, 2'-diylhydrogenphosphate (S-BNP), Mixture of R-alpha-phenylethylamine and S-alpha-phenylethylamine also be tested and the relative abundance of the characteristic ion of mixture is related to the composition of the mixtute. We have therefore proposed a possible method to determine the optical purity of alpha-phenylethylamine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.