719 resultados para long-period grating


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Low-grade gliomas (LGGs) are rare brain neoplasms, with survival spanning up to a few decades. Thus, accurate evaluations on how biomarkers impact survival among patients with LGG require long-term studies on samples prospectively collected over a long period. METHODS The 210 adult LGGs collected in our databank were screened for IDH1 and IDH2 mutations (IDHmut), MGMT gene promoter methylation (MGMTmet), 1p/19q loss of heterozygosity (1p19qloh), and nuclear TP53 immunopositivity (TP53pos). Multivariate survival analyses with multiple imputation of missing data were performed using either histopathology or molecular markers. Both models were compared using Akaike's information criterion (AIC). The molecular model was reduced by stepwise model selection to filter out the most critical predictors. A third model was generated to assess for various marker combinations. RESULTS Molecular parameters were better survival predictors than histology (ΔAIC = 12.5, P< .001). Forty-five percent of studied patients died. MGMTmet was positively associated with IDHmut (P< .001). In the molecular model with marker combinations, IDHmut/MGMTmet combined status had a favorable impact on overall survival, compared with IDHwt (hazard ratio [HR] = 0.33, P< .01), and even more so the triple combination, IDHmut/MGMTmet/1p19qloh (HR = 0.18, P< .001). Furthermore, IDHmut/MGMTmet/TP53pos triple combination was a significant risk factor for malignant transformation (HR = 2.75, P< .05). CONCLUSION By integrating networks of activated molecular glioma pathways, the model based on genotype better predicts prognosis than histology and, therefore, provides a more reliable tool for standardizing future treatment strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Top predators of the arctic tundra are facing a long period of very low prey availability during winter and subsidies from other ecosystems such as the marine environment may help to support their populations. Satellite tracking of snowy owls, a top predator of the tundra, revealed that most adult females breeding in the Canadian Arctic overwinter at high latitudes in the eastern Arctic and spend several weeks (up to 101 d) on the sea-ice between December and April. Analysis of high-resolution satellite images of sea-ice indicated that owls were primarily gathering around open water patches in the ice, which are commonly used by wintering seabirds, a potential prey. Such extensive use of sea-ice by a tundra predator considered a small mammal specialist was unexpected, and suggests that marine resources subsidize snowy owl populations in winter. As sea-ice regimes in winter are expected to change over the next decades due to climate warming, this may affect the wintering strategy of this top predator and ultimately the functioning of the tundra ecosystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hunting is assuming a growing role in the current European forestry and agroforestry landscape. However, consistent statistical sources that provide quantitative information for policy-making, planning and management of game resources are often lacking. In addition, in many instances statistical information can be used without sufficient evaluation or criticism. Recently, the European Commission has declared the importance of high quality hunting statistics and the need to set up a common scheme in Europe for their collection, interpretation and proper use. This work aims to contribute to this current debate on hunting statistics in Europe by exploring data from the last 35 years of Spanish hunting statistics. The analysis focuses on the three major pillars underpinning hunting activity: hunters, hunting grounds and game animals. First, the study aims to provide a better understanding of official hunting statistics for use by researchers, game managers and other potential users. Second, the study highlights the major strengths and weaknesses of the statistical information that was collected. The results of the analysis indicate that official hunting statistics can be incomplete, dispersed and not always homogeneous over a long period of time. This is an issue of which one should be aware when using official hunting data for scientific or technical work. To improve statistical deficiencies associated with hunting data in Spain, our main suggestion is the adoption of a common protocol on data collection to which different regions agree. This protocol should be in accordance with future European hunting statistics and based on robust and well-informed data collection methods. Also it should expand the range of biological, ecological and economic concepts currently included to take account of the profound transformations experienced by the hunting sector in recent years. As much as possible, any future changes in the selection of hunting statistics should allow for comparisons between new variables with the previous ones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Under free running conditions, FREQUENCY (FRQ) protein, a central component of the Neurospora circadian clock, is progressively phosphorylated, becoming highly phosphorylated before its degradation late in the circadian day. To understand the biological function of FRQ phosphorylation, kinase inhibitors were used to block FRQ phosphorylation in vivo and the effects on FRQ and the clock observed. 6-dimethylaminopurine (a general kinase inhibitor) is able to block FRQ phosphorylation in vivo, reducing the rate of phosphorylation and the degradation of FRQ and lengthening the period of the clock in a dose-dependent manner. To confirm the role of FRQ phosphorylation in this clock effect, phosphorylation sites in FRQ were identified by systematic mutagenesis of the FRQ ORF. The mutation of one phosphorylation site at Ser-513 leads to a dramatic reduction of the rate of FRQ degradation and a very long period (>30 hr) of the clock. Taken together, these data strongly suggest that FRQ phosphorylation triggers its degradation, and the degradation rate of FRQ is a major determining factor for the period length of the Neurospora circadian clock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes the study of various grating based optical fibre sensors for applications in refractive index sensing. The sensitivity of these sensors has been studied and in some cases enhanced using novel techniques. The major areas of development are as follows. The sensitivity of long period gratings (LPGs) to surrounding medium refractive index (SRI) for various periods was investigated. The most sensitive period of LPG was found to be around 160 µm and this was due to the core mode coupling to a single cladding mode but phase matching at two wavelength locations, creating two attenuation peaks, close to the waveguide dispersion turning point. Large angle tilted fibre gratings (TFGs) have similar behaviour to LPGs, in that they couple to the co-propagating cladding modes. The tilted structure of the index modulation within the core of the fibre gives rise to a polarisation dependency, differing the large angle TFG from a LPG. Since the large angle TFG couple to the cladding mode they are SRI sensitive, the sensitivity to SRI can be further increased through cladding etching using HF acid. The thinning of the cladding layer caused a reordering of the cladding modes and shifted to more SRI sensitive cladding modes as the investigation discovered. In a SRI range of 1.36 to 1.40 a sensitivity of 506.9 nm/URI was achieved for the etched large angle TFG, which is greater than the dual resonance LPG. UV inscribed LPGs were coated with sol-gel materials with high RIs. The high RI of the coating caused an increase in cladding mode effective index which in turn caused an increase in the LPG sensitivity to SRI. LPGs of various periods of LPG were coated with sol-gel TiO2 and the optimal thickness was found to vary for each period. By coating of the already highly SRI sensitive 160µm period LPG (which is a dual resonance) with a sol-gel TiO2, the SRI sensitivity was further increased with a peak value of 1458 nm/URI, which was an almost 3 fold increase compared to the uncoated LPG. LPGs were also inscribed using a femtosecond laser which produced a highly focused index change which was no uniform throughout the core of the optical fibre. The inscription technique gave rise to a large polarisation sensitivity and the ability to couple to multiple azimuthal cladding mode sets, not seen with uniform UV inscribed gratings. Through coupling of the core mode to multiple sets of cladding modes, attenuation peaks with opposite wavelength shifts for increasing SRI was observed. Through combining this opposite wavelength shifts, a SRI sensitivity was achieved greater than any single observed attenuations peak. The maximum SRI achieved was 1680 nm/URI for a femtosecond inscribed LPG of period 400 µm. Three different types of surface plasmon resonance (SPR) sensors with a multilayer metal top coating were investigated in D shape optical fibre. The sensors could be separated into two types, utilized a pre UV inscribed tilted Bragg grating and the other employed a post UV exposure to generate surface relief grating structure. This surface perturbation aided the out coupling of light from the core but also changed the sensing mechanism from SPR to localised surface plasmon resonance (LSPR). This greatly increased the SRI sensitivity, compared to the SPR sensors; with the gold coated top layer surface relief sensor producing the largest SRI sensitivity of 2111.5nm/URI was achieved. While, the platinum and silver coated top layer surface relief sensors also gave high SRI sensitivities but also the ability to produce resonances in air (not previously seen with the SPR sensors). These properties were employed in two applications. The silver and platinum surface relief devices were used as gas sensors and were shown to be capable of detecting the minute RI change of different gases. The calculated maximum sensitivities produced were 1882.1dB/URI and 1493.5nm/URI for silver and platinum, respectively. Using a DFB laser and power meter a cheap alternative approach was investigated which showed the ability of the sensors to distinguish between different gases and flow rates of those gases. The gold surface relief sensor was coated in a with a bio compound called an aptamer and it was able to detect various concentrations of a biological compound called Thrombin, ranging from 1mM to as low as 10fM. A solution of 2M NaCl was found to give the best stripping results for Thrombin from the aptamer and showed the reusability of the sensor. The association and disassociation constants were calculated to be 1.0638×106Ms-1 and 0.2482s-1, respectively, showing the high affinity of the Aptamer to thrombin. This supports existing working stating that aptamers could be alternative to enzymes for chemical detection and also helps to explain the low detection limit of the gold surface relief sensor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the fabrication of fibre gratings in novel optical fibres for sensing applications. Long period gratings have been inscribed into photonic crystal fibre using the electric-arc technique. The resulting sensing characteristics were found to depend on the air-hole geometry of the particular fibre. This provides the potential of designing a fibre to have enhanced sensitivity to a particular measure and whilst removing unwanted cross sensitivities. Fibre Bragg gratings have been fabricated in a variety of polymer optical fibres, including microstructured polymer optical fibre, using a continuous wave helium cadmium laser. The thermal response of the gratings have been characterised and found to have enhanced sensitivity compared to fibre Bragg gratings in silica optical fibre. The increased sensitivity has been harnessed to achieve a grating based device in single mode step index polymer optical fibre by fabricating an electrically tunable fibre Bragg grating. This was accomplished by coating the grating region in a thin layer of copper, which upon application of a direct current, causes a temperature induced Bragg wavelength shift.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sensing properties of long-period gratings (LPGs) fabricated in photonic crystal fibers by an electric arc are explained and quantified by semianalytical and numerical models. In particular, the grating's insensitivity to temperature and simultaneous sensitivity to strain and refractive index are simulated. The modeling procedure is generalized so that it can be applied to a wide range of LPGs in various fibers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures have been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the design, fabrication and testing of novel grating based Optical Fibre Sensor (OFS) systems being interrogated using “off the shelf” interrogation systems, with the eventual development of marketable commercial systems at the forefront of the research. Both in the industrial weighing and aerospace industries, there has been a drive to investigate the feasibility of using optical fibre sensors being deployed where traditionally their electrical or mechanical counterparts would traditionally have been. Already, in the industrial weighing industry, commercial operators are deploying OFS-based Weigh-In-Motion (WIM) systems. Likewise, in the aerospace industry, OFS have been deployed to monitor such parameters as load history, impact detection, structural damage, overload detection, centre of gravity and the determination of blade shape. Based on the intrinsic properties of fibre Bragg gratings (FBGs) and Long Period Fibre Gratings (LPFGs), a number of novel OFS-based systems have been realised. Experimental work has shown that in the case of static industrial weighing, FBGs can be integrated with current commercial products and used to detect applied loads. The work has also shown that embedding FBGs in e-glass, to form a sensing patch, can result in said patches being bonded to rail track, forming the basis of an FBG-based WIM system. The results obtained have been sufficiently encouraging to the industrial partner that this work will be progressed beyond the scope of the work presented in this thesis. Likewise, and to the best of the author’s knowledge, a novel Bragg grating based systems for aircraft fuel parameter sensing has been presented. FBG-based pressure sensors have been shown to demonstrate good sensitivity, linearity and repeatability, whilst LPFG-based systems have demonstrated a far greater sensitivity when compared to FBGs, as well the advantage of being potentially able to detect causes of fuel adulteration based on their sensitivity to refractive index (RI). In the case of the LPFG-based system, considerable work remains to be done on the mechanical strengthening to improve its survivability in a live aircraft fuel tank environment. The FBG system has already been developed to an aerospace compliant prototype and is due to be tested at the fuel testing facility based at Airbus, Filton, UK. It is envisaged by the author that in both application areas, continued research in this area will lead to the eventual development of marketable commercial products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A dual-peak LPFG (long-period fibre grating), inscribed in an optical fibre, has been employed to sense DNA hybridization in real time, over a 1 h period. One strand of the DNA was immobilized on the fibre, while the other was free in solution. After hybridization, the fibre was stripped and repeated detection of hybridization was achieved, so demonstrating reusability of the device. Neither strand of DNA was fluorescently or otherwise labelled. The present paper will provide an overview of our early-stage experimental data and methodology, examine the potential of fibre gratings for use as biosensors to monitor both nucleic acid and other biomolecular interactions and then give a summary of the theory and fabrication of fibre gratings from a biological standpoint. Finally, the potential of improving signal strength and possible future directions of fibre grating biosensors will be addressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.