971 resultados para kernel density estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report for the scientific sojourn at the the Philipps-Universität Marburg, Germany, from september to december 2007. For the first, we employed the Energy-Decomposition Analysis (EDA) to investigate aromaticity on Fischer carbenes as it is related through all the reaction mechanisms studied in my PhD thesis. This powerful tool, compared with other well-known aromaticity indices in the literature like NICS, is useful not only for quantitative results but also to measure the degree of conjugation or hyperconjugation in molecules. Our results showed for the annelated benzenoid systems studied here, that electron density is more concentrated on the outer rings than in the central one. The strain-induced bond localization plays a major role as a driven force to keep the more substituted ring as the less aromatic. The discussion presented in this work was contrasted at different levels of theory to calibrate the method and ensure the consistency of our results. We think these conclusions can also be extended to arene chemistry for explaining aromaticity and regioselectivity reactions found in those systems.In the second work, we have employed the Turbomole program package and density-functionals of the best performance in the state of art, to explore reaction mechanisms in the noble gas chemistry. Particularly, we were interested in compounds of the form H--Ng--Ng--F (where Ng (Noble Gas) = Ar, Kr and Xe) and we investigated the relative stability of these species. Our quantum chemical calculations predict that the dixenon compound HXeXeF has an activation barrier for decomposition of 11 kcal/mol which should be large enough to identify the molecule in a low-temperature matrix. The other noble gases present lower activation barriers and therefore are more labile and difficult to be observable systems experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of malaria transmission in the Pacific Coast of Colombia during the occurrence of El Niño warm event has been found not to be linked to increases in the density of the vector Anopheles albimanus, but to other temperature-sensitive variables such as longevity, duration of the gonotrophic cycle or the sporogonic period of Plasmodium. The present study estimated the effects of temperature on duration of the gonotrophic cycle and on maturation of the ovaries of An. albimanus. Blood fed adult mosquitoes were exposed to temperatures of 24, 27, and 30°C, held individually in oviposition cages and assessed at 12 h intervals. At 24, 27, and 30°C the mean development time of the oocytes was 91.2 h (95% C.I.: 86.5-96), 66.2 h (61.5-70.8), and 73.1 h (64-82.3), respectively. The mean duration of the gonotrophic cycle for these three temperatures was 88.4 h (81.88-94.9), 75 h (71.4-78.7), and 69.1 h (64.6-73.6) respectively. These findings indicate that both parameters in An. albimanus are reduced when temperatures rose from 24 to 30°C, in a nonlinear manner. According to these results the increase in malaria transmission during El Niño in Colombia could be associated with a shortening of the gonotrophic cycle in malaria vectors, which could enhance the frequency of man-vector contact, affecting the incidence of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth can accommodate to the given quantile level. The procedure is useful for large data sets and improves quantile estimation compared to other methods in heavy tailed distributions. Implementation is straightforward and R programs are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symbol transition density in a digitally modulated signal affects the performance of practical synchronization schemes designed for timing recovery. This paper focuses on the derivation of simple performance limits for the estimation of the time delay of a noisy linearly modulated signal in the presence of various degrees of symbol correlation produced by the varioustransition densities in the symbol streams. The paper develops high- and low-signal-to-noise ratio (SNR) approximations of the so-called (Gaussian) unconditional Cramér–Rao bound (UCRB),as well as general expressions that are applicable in all ranges of SNR. The derived bounds are valid only for the class of quadratic, non-data-aided (NDA) timing recovery schemes. To illustrate the validity of the derived bounds, they are compared with the actual performance achieved by some well-known quadratic NDA timing recovery schemes. The impact of the symbol transitiondensity on the classical threshold effect present in NDA timing recovery schemes is also analyzed. Previous work on performancebounds for timing recovery from various authors is generalized and unified in this contribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: « Osteo-Mobile Vaud » is a mobile osteoporosis (OP) screening program. The women > 60 years living in the region Vaud will be offered OP screening with new equipment installed in a bus. The main goal is to evaluate the fracture risk with the combination of clinical risk factors (CRF) and informations extracted by a single DXA: bone mineral density (BMD), vertebral fracture assessment (VFA), and micro-architecture (MA) evaluation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone MA based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. A 55-years follow- up is planned. Method: The Osteo-Mobile Vaud cohort (1500 women, > 60 years, living in the region Vaud) started in July 2010. CRF for OP, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded. Preliminary results are reported. Results: In July 31th, we evaluated 510 women: mean age 67 years, BMI 26 kg/m². 72 women had one or more fragility fractures, 39 had vertebral fracture (VFx) grade 2/3. TBS decreases with age (-0.005 / year, p<0.001), and with BMI (-0.011 per kg/m², p<0.001). Correlation between BMD and site matched TBS is low (r=0.4, p<0.001). For the lowest T-score BMD, odds ratio (OR, 95% CI) for VFx grade 2/3 and clinical OP Fx are 1.8 (1.1-2.9) and 2.3 (1.5-3.4). For TBS, age-, BMI- and BMD adjusted ORs (per SD decrease) for VFx grade 2/3 and clinical OP Fx are 1.9 (1.2-3.0) and 1.8 (1.2-2.7). The TBS added value was independent of lumbar spine BMD or the lowest T-score (femoral neck, total hip or lumbar spine). Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS and BMD may increase significantly the identification of women with prevalent OP Fx. For the first time we are able to have complementary information about fracture (VFA), density (BMD), and micro-architecture (TBS) from a simple, low ionizing radiation and cheap device: DXA. The value of such informations in a screening program will be evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.