993 resultados para interface friction
Resumo:
It is shown that for an abrupt bimetallic interface a hydrodynamic solution for interface plasmons does not exist. It appears that this result is valid irrespective of the choice of of the additional boundary condition, thereby suggesting a careful look at the use of usual hydrodynamic equations for a bimetallic interface.
Resumo:
Die Vorliegende Arbeit beschäftigt sich mit den Spannungen und Verschiebungen an einem elastischen Halbraum unter einem kreisförmigen biegsamen Fundament, wenn an der Kontaktfläche vollkommenes Haften besteht. Das gemischte Randwertproblem wird mit Hilfe von Hankel-Transformationen auf duale Integralgleichungen von Titchmarsh- Typ zurückgeführt. Für die Berechnung der Spannungen und Verschiebungen werden Gaußsche Quadraturformeln benutzt. Die Ergebnisse werden mit denen verglichen, die man bei glattem Fundament erhält, und der Einfluß der Poisson-Zahl auf die Spannungen und Verschiebungen wird deutlich gemacht. Schließlich werden die Ergebnisse für den praktischen Gebrauch in Diagrammen und Tabellen zusammengefaßt.
Resumo:
In two dimensional (2D) gas-liquid systems, the reported simulation values of line tension are known to disagree with the existing theoretical estimates. We find that while the simulation erred in truncating the range of the interaction potential, and as a result grossly underestimated the actual value, the earlier theoretical calculation was also limited by several approximations. When both the simulation and the theory are improved, we find that the estimate of line tension is in better agreement with each other. The small value of surface tension suggests increased influence of noncircular clusters in 2D gas-liquid nucleation, as indeed observed in a recent simulation.
Resumo:
The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.
Resumo:
Die Vorliegende Arbeit beschäftigt sich mit den Spannungen und Verschiebungen an einem elastischen Halbraum unter einem kreisförmigen biegsamen Fundament, wenn an der Kontaktfläche vollkommenes Haften besteht. Das gemischte Randwertproblem wird mit Hilfe von Hankel-Transformationen auf duale Integralgleichungen von Titchmarsh- Typ zurückgeführt. Für die Berechnung der Spannungen und Verschiebungen werden Gaußsche Quadraturformeln benutzt. Die Ergebnisse werden mit denen verglichen, die man bei glattem Fundament erhält, und der Einfluß der Poisson-Zahl auf die Spannungen und Verschiebungen wird deutlich gemacht. Schließlich werden die Ergebnisse für den praktischen Gebrauch in Diagrammen und Tabellen zusammengefaßt.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
An interface between two polar semiconductors can support a whole new family of seven type of optic-phonon magnetoplasmons. Six of these arise due to nonequivalence property of propagation introduced by the magnetic field in Voigt configuration and one mainly due to finite plasma density ratio at the interface.
Resumo:
Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is road dust . The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: i) How do traction sanding and physical properties of the traction sand aggregate affect formation of road dust? ii) How do studded tires affect the formation of road dust when compared with friction tires? iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland? iv) What is the size distribution of abrasion particles from tire-road interaction? The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the pavement aggregate. Therefore particles from both aggregates are observed. The mass size distribution of traction sand and pavement wear particles was mainly coarse, but fine and submicron particles were also present.
Resumo:
A mathematical model for doped-oxide-source diffusion is proposed. In this model the concept of segregation of impurity at the silicon-silicon dioxide is used and also a constant of “rate limitation” is introduced through a chemical reaction at the interface.
Resumo:
Magnetoplasmon-type surface polaritons are studied at the interfaces of sandwich structures in the configuration with a magnetic field oriented parallel to the interface but perpendicular to the direction of wave propagation. It is shown that the propagation window for the surface polaritons is shifted to higher frequencies in the presence of the magnetic field directed positively. On reversal of the magnetic field an additional low frequency propagation band appears. Irrespective of the direction and strength of the magnetic field there exists a certain frequency range in which interface polaritons cannot propagate. For sandwich structures for which the dielectric constant and the plasma frequency of one medium are simultaneously greater or less than those of the second medium gaps and multiple branches can appear in the propagation window either for n > 0 or n <; 0 waves. A graphical method for the estimation of critical ranges of B0 and dielectric constant ratios for different sandwich structures, within which gaps and multiple branches appear, is given
Resumo:
A closed form solution is presented for determining the shape and location of the interface between two dissimilar fluids (having different densities) when steady flow takes place through a homogeneous and isotropic porous medium, into a sheetpile cofferdam; the interface is assumed to be sharp and the lower fluid stationary. The solution is obtained using the inverse hodograph. Numerical results are presented in nondimensional form for various parametric conditions in the physical plane; the interface pattern, as also the seepage discharge and exit gradient distribution are shown. The critical conditions of the interface are studied.
Resumo:
The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.
Resumo:
This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior.