976 resultados para insterstitial fluid pressure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perioperative fluid therapy remains a highly debated topic. Its purpose is to maintain or restore effective circulating blood volume during the immediate perioperative period. Maintaining effective circulating blood volume and pressure are key components of assuring adequate organ perfusion while avoiding the risks associated with either organ hypo- or hyperperfusion. Relative to perioperative fluid therapy, three inescapable conclusions exist: overhydration is bad, underhydration is bad, and what we assume about the fluid status of our patients may be incorrect. There is wide variability of practice, both between individuals and institutions. The aims of this paper are to clearly define the risks and benefits of fluid choices within the perioperative space, to describe current evidence-based methodologies for their administration, and ultimately to reduce the variability with which perioperative fluids are administered. Based on the abovementioned acknowledgements, a group of 72 researchers, well known within the field of fluid resuscitation, were invited, via email, to attend a meeting that was held in Chicago in 2011 to discuss perioperative fluid therapy. From the 72 invitees, 14 researchers representing 7 countries attended, and thus, the international Fluid Optimization Group (FOG) came into existence. These researches, working collaboratively, have reviewed the data from 162 different fluid resuscitation papers including both operative and intensive care unit populations. This manuscript is the result of 3 years of evidence-based, discussions, analysis, and synthesis of the currently known risks and benefits of individual fluids and the best methods for administering them. The results of this review paper provide an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration. We recommend that both perioperative fluid choice and therapy be individualized. Patients should receive fluid therapy guided by predefined physiologic targets. Specifically, fluids should be administered when patients require augmentation of their perfusion and are also volume responsive. This paper provides a general approach to fluid therapy and practical recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the pressor and dipsogenic response to cholinergic activation and angiotensin II (ANGII) injection into the subfornical organ (SFO) in rats. In addition the effect of MSA lesion on the natriuresis, kaliuresis and diuresis after cholinergic activation of the SFO was also investigated. Sham- and MSA-lesioned rats with a stainless steel cannula implanted into the SFO was used. The injection of ANGII (12 ng) into the SFO in sham rats produced pressor (24 ± 2 mmHg) and dipsogenic (9.6 ± 1.1 ml/h) responses. MSA lesion, both acute (2-6 days) and chronic (15-19 days), reduced the pressor (14 ± 2 mmHg) and dipsogenic (2.7 ± 1 ml/h) responses to ANGII into SFO. The injection of the cholinergic agonist carbachol (2 nmol) into the SFO in sham rats produced pressor (48 ± 4 mmHg), dipsogenic (10 ± 1.2 ml/h), natriuretic (457 ± 58 μEq/2 h) and kaliuretic (249 ± 16 μEq/2 h) responses. Acute, but not chronic MSA lesion reduced the pressor (27 ± 3 mmHg), natriuretic (198 ± 55 μEq/2 h) and kaliuretic (128 ± 16 μEq/2 h) responses to carbachol into SFO. No change in the dipsogenic response to carbachol into the SFO was observed in MSA-lesioned rats. Antidiuresis after carbachol was observed only in MSA-lesioned rats. The present results show that the MSA plays a role on the pressor, natriuretic and kaliuretic responses to cholinergic activation of the SFO in rats and on the pressor and dipsogenic responses to ANGII into the same area. In addition, they provide circumstancial evidence for separate circuits subserving the dipsogenic response to central cholinergic and angiotensinergic activation. A facilited diuresis after MSA lesion is also suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Acute normovolemic hemodilution (ANH) is an alternative to blood transfusion in surgeries involving blood loss. This experimental study was designed to evaluate whether pulse pressure variation (PPV) would be an adequate tool for monitoring changes in preload during ANH, as assessed by transesophageal echocardiography. Methods. Twenty-one anesthetized and mechanically ventilated pigs were randomized into three groups: CTL (control), HES (hemodilution with 6% hydroxyethyl starch at a 1:1 ratio) or NS (hemodilution with saline 0.9% at a 3:1 ratio). Hemodilution was performed in animals of groups NS and HES in two stages, with target hematocrits 22% and 15%, achieved at 30-minute intervals. After two hours, 50% of the blood volume withdrawn was transfused and animals were monitored for another hour. Statistical analysis was based on ANOVA for repeated measures followed by multiple comparison test (P<0.05). Pearson's correlations were performed between changes in left ventricular end-diastolic volume (LVEDV) and PPV, central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP). Results. Group NS received a significantly greater amount of fluids during ANH (NS, 900 +/- 168 mL vs. HES, 200 +/- 50 mL, P<0.05) and presented greater urine output (NS, 2643 +/- 1097mL vs. HES, 641 +/- 338mL, P<0.001). Significant decreases in LVEDV were observed in group NS from completion of ANH until transfusion. In group HES, only increases in LVEDV were observed, at the end of ANH and at transfusion. Such changes in LVEDV (Delta LVEDV) were better reflected by changes in PPV (Delta PPV, R=-0.62) than changes in CVP (Delta CVP R=0.32) or in PAOP (Delta PAOP, R=0.42, respectively). Conclusion. Changes in preload during ANH were detected by changes in PPV. Delta PPV was superior to Delta PAOP and Delta CVP to this end. (Minerva Anestesiol 2012;78:426-33)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 10191031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright (c) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA (R) in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Introduction We conducted the present study to examine the effects of hypertonic saline solution (7.5%) on cardiovascular function and splanchnic perfusion in experimental sepsis. Methods Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over 30 minutes. After 30 minutes, they were randomized to receive lactated Ringer's solution 32 ml/kg (LR; n = 7) over 30 minutes or 7.5% hypertonic saline solution 4 ml/kg (HS; n = 8) over 5 minutes. They were observed without additional interventions for 120 minutes. Cardiac output (CO), mean arterial pressure (MAP), portal and renal blood flow (PBF and RBF, respectively), gastric partial pressure of CO2 (pCO2; gas tonometry), blood gases and lactate levels were assessed. Results E. coli infusion promoted significant reductions in CO, MAP, PBF and RBF (approximately 45%, 12%, 45% and 25%, respectively) accompanied by an increase in lactate levels and systemic and mesenteric oxygen extraction (sO2ER and mO2ER). Widening of venous-arterial (approximately 15 mmHg), portal-arterial (approximately 18 mmHg) and gastric mucosal-arterial (approximately 55 mmHg) pCO2 gradients were also observed. LR and HS infusion transiently improved systemic and regional blood flow. However, HS infusion was associated with a significant and sustained reduction of systemic (18 ± 2.6 versus 38 ± 5.9%) and mesenteric oxygen extraction (18.5 ± 1.9 versus 36.5 ± 5.4%), without worsening other perfusional markers. Conclusion A large volume of LR or a small volume of HS promoted similar transient hemodynamic benefits in this sepsis model. However, a single bolus of HS did promote sustained reduction of systemic and mesenteric oxygen extraction, suggesting that hypertonic saline solution could be used as a salutary intervention during fluid resuscitation in septic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with hydrocephalus and risk factors for overdrainage may be submitted to ventricular shunt (VS) implant with antisiphon device. The objective of this study was to prospectively evaluate for two years the clinical and tomographic results of the implant of fixed-pressure valves with antisiphon device SPHERA® in 35 adult patients, with hydrocephalus and risk factors for overdrainage. Of these, 3 had congenital hydrocephalus in adult patients with very dilated ventricles (Evans index >50%), 3 had symptomatic overdrainage after previous VS implant (subdural hematoma, hygroma or slit ventricle syndrome), 1 had previous chronic subdural hematoma, 15 had normal pressure hydrocephalus with final lumbar pressure <5 cm H2O after tap test (40 mL), 6 had pseudotumor cerebri, and 7 had hydrocephalus due to other causes. Clinical improvement was observed and sustained in 94.3% of the patients during the two-year period with no computed tomography (CT) evidence of hypo or overdrainage, and no immediate early or late significant complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element techniques for solving the problem of fluid-structure interaction of an elastic solid material in a laminar incompressible viscous flow are described. The mathematical problem consists of the Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian formulation coupled with a non-linear structure model, considering the problem as one continuum. The coupling between the structure and the fluid is enforced inside a monolithic framework which computes simultaneously for the fluid and the structure unknowns within a unique solver. We used the well-known Crouzeix-Raviart finite element pair for discretization in space and the method of lines for discretization in time. A stability result using the Backward-Euler time-stepping scheme for both fluid and solid part and the finite element method for the space discretization has been proved. The resulting linear system has been solved by multilevel domain decomposition techniques. Our strategy is to solve several local subproblems over subdomain patches using the Schur-complement or GMRES smoother within a multigrid iterative solver. For validation and evaluation of the accuracy of the proposed methodology, we present corresponding results for a set of two FSI benchmark configurations which describe the self-induced elastic deformation of a beam attached to a cylinder in a laminar channel flow, allowing stationary as well as periodically oscillating deformations, and for a benchmark proposed by COMSOL multiphysics where a narrow vertical structure attached to the bottom wall of a channel bends under the force due to both viscous drag and pressure. Then, as an example of fluid-structure interaction in biomedical problems, we considered the academic numerical test which consists in simulating the pressure wave propagation through a straight compliant vessel. All the tests show the applicability and the numerical efficiency of our approach to both two-dimensional and three-dimensional problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.