961 resultados para human syncytial respiratory virus


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O Vírus Respiratório Sincicial Humano (VRSH) é descrito como o mais importante patógeno viral causador de doenças respiratórias agudas das vias respiratórias inferiores em crianças. Neste estudo 84 amostras de crianças com idade abaixo dos dois anos apresentando sintomas de doença respiratória aguda, foram obtidas no período de setembro de 2000 a novembro de 2001. Analise por imunofluorescência indireta e transcrição reversa seguida de PCR, revelou que 18% (15/84) das amostras foram positivas, sendo que em 80% (12/15) dos casos a detecção de VRSH foi observada em crianças abaixo dos seis meses, e também que os subgrupos A e B co-circularam. Estes são os primeiros dados obtidos para a cidade de Botucatu, sendo que a sazonalidade mostrou-se evidente pela maior circulação desse vírus entre os meses de maio e julho

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a flipflop phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HRSV is one of the most important pathogens causing acute respiratory tract diseases as bronchiolitis and pneumonia among infants. HRSV was isolated from two distinct communities, a public day care center and a public hospital in Sao Jose do Rio Preto - SP, Brazil. We obtained partial sequences from G gene that were used on phylogenetic and selection pressure analysis. HRSV accounted for 29% of respiratory infections in hospitalized children and 7.7% in day care center children. On phylogenetic analysis of 60 HRSV strains, 48 (80%) clustered within or adjacent to the GA1 genotype; GA5, NA1, NA2, BA-IV and SAB1 were also observed. SJRP GA1 strains presented variations among deduced amino acids composition and lost the potential O-glycosilation site at amino acid position 295, nevertheless this resulted in an insertion of two potential O-glycosilation sites at positions 296 and 297. Furthermore, a potential O-glycosilation site insertion, at position 293, was only observed for hospital strains. Using SLAC and MEME methods, only amino acid 274 was identified to be under positive selection. This is the first report on HRSV circulation and genotypes classification derived from a day care center community in Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characterization of Human Respiratory Syncytial Virus (HRSV) protein interactions with host cell components is crucial to devise antiviral strategies. Viral nucleoprotein, phosphoprotein and matrix protein genes were optimized for human codon usage and cloned into expression vectors. HEK-293T cells were transfected with these vectors, viral proteins were immunoprecipitated, and co-immunoprecipitated cellular proteins were identified through mass spectrometry. Cell proteins identified with higher confidence scores were probed in the immunoprecipitation using specific antibodies. The results indicate that nucleoprotein interacts with arginine methyl-transferase, methylosome protein and Hsp70. Phosphoprotein interacts with Hsp70 and tropomysin, and matrix with tropomysin and nucleophosmin. Additionally, we performed immunoprecipitation of these cellular proteins in cells infected with HRSV, followed by detection of co-immunoprecipitated viral proteins. The results indicate that these interactions also occur in the context of viral infection, and their potential contribution for a HRSV replication model is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infectious human respiratory syncytial virus (RSV) was produced by the intracellular coexpression of five plasmid-borne cDNAs. One cDNA encoded a complete positive-sense version of the RSV genome (corresponding to the replicative intermediate RNA or antigenome), and each of the other four encoded a separate RSV protein, namely, the major nucleocapsid N protein, the nucleocapsid P phosphoprotein, the major polymerase L protein, or the protein from the 5' proximal open reading frame of the M2 mRNA [M2(ORF1)]. RSV was not produced if any of the five plasmids was omitted. The requirement for the M2(ORF1) protein is consistent with its recent identification as a transcription elongation factor and confirms its importance for RSV gene expression. It should thus be possible to introduce defined changes into infectious RSV. This should be useful for basic studies of RSV molecular biology and pathogenesis; in addition, there are immediate applications to the development of live attenuated vaccine strains bearing predetermined defined attenuating mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human metapneumovirus (HMPV) is a recently discovered pathogen first identified in respiratory specimens from young children suffering from clinical respiratory syndromes ranging from mild to severe lower respiratory tract illness. HMPV has worldwide prevalence, and is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to respiratory syncytial virus (RSV). The disease burden associated with HMPV infection has not been fully elucidated; however, studies indicate that HMPV may cause upper or lower respiratory tract illness in patients between ages 2 months and 87 years, may co-circulate with RSV, and HMPV infection may be associated with asthma exacerbation. The mechanisms and effector pathways contributing to immunity or disease pathogenesis following infection are not fully understood; however, given the clinical significance of HMPV, there is a need for a fundamental understanding of the immune and pathophysiological processes that occur following infection to provide the foundation necessary for the development of effective vaccine or therapeutic intervention strategies. This review provides a current perspective on the processes associated with HMPV infection, immunity, and disease pathogenesis. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To evaluate whether maternal HIV disease severity during pregnancy is associated with an increased likelihood of lower respiratory tract infections (LRTIs) in HIV-exposed, uninfected infants. Methods: HIV-exposed, uninfected, singleton, term infants enrolled in the NISDI Perinatal Study, with birth weight >2500 g were followed from birth until 6 months of age. LRTI diagnoses, hospitalizations, and associated factors were assessed. Results: Of 547 infants, 103 (18.8%) experienced 116 episodes of LRTI (incidence = 0.84 LRTIs/100 child-weeks). Most (81%) episodes were bronchiolitis. Forty-nine (9.0%) infants were hospitalized at least once with an LRTI. There were 53 hospitalizations (45.7%) for 116 LRTI episodes. None of these infants were breastfed. The odds of LRTI in infants whose mothers had CD4% <14 at enrollment were 4.4 times those of infants whose mothers had CD4% >= 29 (p = 0.003). The odds of LRTI in infants with a CD4+ count (cells/ mm(3)) <750 at hospital discharge were 16.0 times those of infants with CD4+ >= 750 (p = 0.002). Maternal CD4+ decline and infant hemoglobin at the 6-12 week visit were associated with infant LRTIs after 6-12 weeks and before 6 months of age. Conclusions: Acute bronchiolitis is common and frequently severe among HIV-exposed, uninfected infants aged 6 months or less. Lower maternal and infant CD4+ values were associated with a higher risk of infant LRTIs. Further understanding of the immunological mechanisms of severe LRTIs is needed. (C) 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Respiratory syncytial virus is the most important cause of viral lower respiratory illness in infants and children worldwide. By the age of 2 years, nearly every child has become infected with respiratory syncytial virus and re-infections are common throughout life. Most infections are mild and can be managed at home, but this virus causes serious diseases in preterm children, especially those with bronchopulmonary dysplasia. Respiratory syncytial virus has also been recognized as an important pathogen in people with immunossupressive and other underlying medical problems and institutionalizated elderly, causing thousands of hospitalizations and deaths every year. The burden of these infections makes the development of vaccines for respiratory syncytial virus highly desirable, but the insuccess of a respiratory syncytial virus formalin-inactivated vaccine hampered the progress in this field. To date, there is no vaccine available for preventing respiratory syncytial virus infections, however, in the last years, there has been much progress in the understanding of immunology and immunopathologic mechanisms of respiratory syncytial virus diseases, which has allowed the development of new strategies for passive and active prophylaxis. In this article, the author presents a review about novel approaches to the prevention of respiratory syncytial virus infections, such as: passive immunization with human polyclonal intravenous immune globulin and humanized monoclonal antibodies (both already licensed for use in premature infants and children with bronchopulmonary dysplasia), and many different vaccines that are potential candidates for active immunization against respiratory syncytial virus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human adenovirus (HAdV) and human respiratory syncytial virus (HRSV) are important etiologic agents of acute respiratory infections. In this study, a duplex polymerase chain reaction (PCR) assay was developed for the simultaneous detection of HAdV and HRSV in clinical samples. Sixty previously screened nasopharyngeal aspirates were used: 20 HAdV-positive, 20 HRSV-positive and 20 double-negative controls. Eight samples were positive for both viruses. The duplex PCR assay proved to be as sensitive and specific as single-target assays and also detected the mixed infections with certainty. The identification of both viruses in a single reaction offers a reduction in both cost and laboratory diagnostic time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Respiratory syncytial virus (RSV) is an important pathogen in lower respiratory tract infections (LRTI) in infants, but there are limited data concerning patients with underlying conditions and children older than 2 years of age. METHODS We have designed a prospective observational multicenter national study performed in 26 Spanish hospitals (December 2011-March 2012). Investigational cases were defined as children with underlying chronic diseases and were compared with a group of previously healthy children (proportion 1:2). Clinical data were compared between the groups. RESULTS A total of 1763 children hospitalized due to RSV infection during the inclusion period were analyzed. Of them, 225 cases and 460 healthy children were enrolled in the study. Underlying diseases observed were respiratory (64%), cardiovascular (25%), and neurologic (12%), as well as chromosomal abnormalities (7·5%), immunodeficiencies (6·7%), and inborn errors of metabolism (3·5%). Cases were statistically older than previously healthy children (average age: 16·3 versus 5·5 months). Cases experienced hypoxemia more frequently (P < 0·001), but patients with respiratory diseases required oxygen therapy more often (OR: 2·99; 95% CI: 1·03-8·65). Mechanical ventilation was used more in patients with cardiac diseases (OR: 3·0; 95% CI: 1·07-8·44) and in those with inborn errors of metabolism (OR: 12·27; 95% CI: 2·11-71·47). This subgroup showed a higher risk of admission to the PICU (OR: 6·7, 95% CI: 1·18-38·04). Diagnosis of pneumonia was more frequently found in cases (18·2% versus 9·3%; P < 0·01). CONCLUSIONS A significant percentage of children with RSV infection have underlying diseases and the illness severity is higher than in healthy children.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory tract infections in infants and children. Rapid diagnosis is required to permit appropriate care and treatment and to avoid unnecessary antibiotic use. Reverse transcriptase (RT-PCR) and indirect immunofluorescence assay (IFA) methods have been considered important tools for virus detection due to their high sensitivity and specificity. In order to maximize use-simplicity and minimize the risk of sample cross-contamination inherent in two-step techniques, a RT-PCR method using only a single tube to detect HRSV in clinical samples was developed. Nasopharyngeal aspirates from 226 patients with acute respiratory illness, ranging from infants to 5 years old, were collected at the University Hospital of the University of Sao Paulo (HU-USP), and tested using IFA, one-step RT-PCR, and semi-nested RT-PCR. One hundred and two (45.1%) samples were positive by at least one of the three methods, and 75 (33.2%) were positive by all methods: 92 (40.7%) were positive by one-step RT-PCR, 84 (37.2%) by IFA, and 96 (42.5%) by the semi-nested RT-PCR technique. One-step RT-PCR was shown to be fast, sensitive, and specific for RSV diagnosis, without the added inconvenience and risk of false positive results associated with semi-nested PCR. The combined use of these two methods enhances HRSV detection. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.