870 resultados para hematopoietic niche


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenascins are extracellular matrix proteins with distinct spatial and temporal expression during development, tissue homeostasis and disease. Based on their expression patterns and knockout phenotypes an important role of tenascins in tissue formation, cell adhesion modulation, regulation of proliferation and differentiation has been demonstrated. All of these features are of importance in stem cell niches where a precise regulation of growth versus differentiation has to be guaranteed. In this review we summarize the expression and possible functions of tenascins in neural, epithelial and osteogenic stem cell niches during normal development and organ turnover, in the hematopoietic and pro-inflammatory niche as well as in the metastatic niche during cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. OBJECTIVE To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphamide. DESIGN, SETTING, AND PARTICIPANTS The Autologous Stem Cell Transplantation International Scleroderma (ASTIS) trial, a phase 3, multicenter, randomized (1:1), open-label, parallel-group, clinical trial conducted in 10 countries at 29 centers with access to a European Group for Blood and Marrow Transplantation-registered transplant facility. From March 2001 to October 2009, 156 patients with early diffuse cutaneous systemic sclerosis were recruited and followed up until October 31, 2013. INTERVENTIONS HSCT vs intravenous pulse cyclophosphamide. MAIN OUTCOMES AND MEASURES The primary end point was event-free survival, defined as time from randomization until the occurrence of death or persistent major organ failure. RESULTS A total of 156 patients were randomly assigned to receive HSCT (n = 79) or cyclophosphamide (n = 77). During a median follow-up of 5.8 years, 53 events occurred: 22 in the HSCT group (19 deaths and 3 irreversible organ failures) and 31 in the control group (23 deaths and 8 irreversible organ failures). During the first year, there were more events in the HSCT group (13 events [16.5%], including 8 treatment-related deaths) than in the control group (8 events [10.4%], with no treatment-related deaths). At 2 years, 14 events (17.7%) had occurred cumulatively in the HSCT group vs 14 events (18.2%) in the control group; at 4 years, 15 events (19%) had occurred cumulatively in the HSCT group vs 20 events (26%) in the control group. Time-varying hazard ratios (modeled with treatment × time interaction) for event-free survival were 0.35 (95% CI, 0.16-0.74) at 2 years and 0.34 (95% CI, 0.16-0.74) at 4 years. CONCLUSIONS AND RELEVANCE Among patients with early diffuse cutaneous systemic sclerosis, HSCT was associated with increased treatment-related mortality in the first year after treatment. However, HCST conferred a significant long-term event-free survival benefit. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN54371254.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the tetracycline-off and Cre/loxP systems were combined to gain temporal and spatial control of transgene expression. Mice were generated that carried three transgenes: Tie2-tTA, tet-O-Cre and either the ZEG or ZAP reporter. Tie2-tTA directs expression of tetracycline-controlled transactivator (tTA) in endothelial and hematopoietic cells under the control of the Tie2 promoter. Tet-O-Cre produces Cre recombinase from a minimal promoter containing the tet-operator (tetO). ZEG or ZAP contains a strong promoter and a loxP-flanked stop sequence, followed by an enhanced green fluorescence protein (EGFP) or human placental alkaline phosphatase (hPLAP) reporter. In the presence of tetracycline, the tTA transactivator produced by Tie-2-tTA is disabled and Cre is not expressed. In the absence of tetracycline, the tTA binds tet-O-Cre to drive the expression of Cre, which recombines the loxP sites of the ZEG or ZAP transgene and results in reporter gene expression. In the present study, the expression of the ZEG or ZAP reporter genes in embryos and adult animals with and without tetracycline treatment was examined. In the presence of tetracycline, no reporter gene expression was observed. When tetracycline was withdrawn, Cre excision was activated and the reporter genes were detected in endothelial and hematopoietic cells. These results demonstrate that this system may be used to bypass embryonic lethality and access adult phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AIMS The diverse phenotypic changes and clinical and economic disadvantages associated with the monolayer expansion of bone marrow-derived mesenchymal stromal cells (MSCs) have focused attention on the development of one-step intraoperative cells therapies and homing strategies. The mononuclear cell fraction of bone marrow, inclusive of discrete stem cell populations, is not well characterized, and we currently lack suitable cell culture systems in which to culture and investigate the behavior of these cells. METHODS Human bone marrow-derived mononuclear cells were cultured within fibrin for 2 weeks with or without fibroblast growth factor-2 supplementation. DNA content and cell viability of enzymatically retrieved cells were determined at days 7 and 14. Cell surface marker profiling and cell cycle analysis were performed by means of multi-color flow cytometry and a 5-ethynyl-2'-deoxyuridine incorporation assay, respectively. RESULTS Total mononuclear cell fractions, isolated from whole human bone marrow, was successfully cultured in fibrin gels for up to 14 days under static conditions. Discrete niche cell populations including MSCs, pericytes and hematopoietic stem cells were maintained in relative quiescence for 7 days in proportions similar to that in freshly isolated cells. Colony-forming unit efficiency of enzymatically retrieved MSCs was significantly higher at day 14 compared to day 0; and in accordance with previously published works, it was fibroblast growth factor-2-dependant. CONCLUSIONS Fibrin gels provide a simple, novel system in which to culture and study the complete fraction of bone marrow-derived mononuclear cells and may support the development of improved bone marrow cell-based therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall composition of the mammalian intestinal microbiota varies between individuals: within each individual there are differences along the length of the intestinal tract related to host nutrition, intestinal motility and secretions. Mucus is a highly regenerative protective lubricant glycoprotein sheet secreted by host intestinal goblet cells; the inner mucus layer is nearly sterile. Here we show that the outer mucus of the large intestine forms a unique microbial niche with distinct communities, including bacteria without specialized mucolytic capability. Bacterial species present in the mucus show differential proliferation and resource utilization compared with the same species in the intestinal lumen, with high recovery of bioavailable iron and consumption of epithelial-derived carbon sources according to their genome-encoded metabolic repertoire. Functional competition for existence in this intimate layer is likely to be a major determinant of microbiota composition and microbial molecular exchange with the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT.