915 resultados para flow cell
Resumo:
A wall-jet cell incorporating a carbon fibre array ring/glassy-carbon disk electrode has been constructed, and characterized by the cyclic voltammetry and flow-injection techniques. The ring (composed of several microdisks) and glassy-carbon disk electrode, can be used separately for different purposes, e.g., detection in solution without a supporting electrolyte, collection/shielding detection with dual-electrode and voltammetric/amperometric detection with series dual-electrode. The electrode shows better collection and shielding effects than usual ring-disk electrode in quiescent solution and the series dual-electrode in a thin-layer flow-through cell. The detection limit at the ring electrode is comparable with that at a conventional-size electrode, and has been used in the mobile phase without a supporting electrolyte, proving to be a promising detector for normal-phase liquid chromatography.
Resumo:
An electrochemical detector which was constracted by using a carbon fibre electrode in a flow-through cell was connected with a liquid chromatographic column. Thus a sensitive,
Resumo:
Rhein, an anthraquinone derivative of rhubarb, inhibits the proliferation of various human cancer cells. In this paper, we focused on studying the effects of rhein on human hepatocelluar carcinoma BEL-7402 cells and further understanding the underlying molecular mechanism in an effort to make the potential development of rhein in the treatment of cancers. Using MTT assay and flow cytometry, we demonstrate a critical role of rhein in the suppression of BEL-7402 cell proliferation in a concentration- and time-dependent manner. The increase of apoptosis rate was observed after incubation of BEL-7402 cells with rhein at 50-200 mu M for 48 hours, and the cells exhibit typical apoptotic features including cellular morphological change and chromatin condensation. Moreover, rhein-induced cell cycle S-phase arrest. Additionally, after rhein treatment, expression levels of c-Myc gene were decreased, while those of caspase-3 gene were increased in a dose-dependent manner by using real-time PCR assay. The results demonstrate for the first time that cell cycle S-phase arrest is one of the mechanisms of rhein in inhibition of BEL-7402 cells. Rhein plays its role by inducing cell cycle arrest via downregulation of oncogene c-Myc and apoptosis through the caspase-dependent pathway. It is expected that rhein will be effective and useful as a new agent in hepatocelluar carcinoma treatment in the future.
Resumo:
In this paper, a new scheduling algorithm for the flexible manufacturing cell is presented, which is a discrete time control method with fixed length control period combining with event interruption. At the flow control level we determine simultaneously the production mix and the proportion of parts to be processed through each route. The simulation results for a hypothetical manufacturing cell are presented.
Resumo:
Tangential flow affinity membrane cartridge (TFAMC) fs a new model of immunoadsorption therapy for hemoperfusion. Recombinant Protein A was immobilized on the membrane cartridge through Schiff base formation for extracorporeal IgG and immune complex removal from blood. Flow characteristics, immunoadsorption capacity and biocompatibility of protein A TFAMC were studied. The results showed that the pressure drop increased with the increasing flow rate of water, plasma and blood, demonstrating reliable strength of membrane at high now rare. The adsorption capacities of protein A TFAMC for IgG from human plasma and blood were measured. The cartridge with 139 mg protein A immobilized on the matrix (6 mg protein A/g dry matrix) adsorbed 553 mg IgG (23.8 mg IgG/g dry matrix) from human plasma and 499.4 mg IgG (21.5 mg IgG/g dry matrix) from human blood, respectively. The circulation time had a major influence on IgG adsorption capacity, but the flow rate had little influence. Experiments in vitro and in vivo confirmed that protein A TFAMC mainly adsorbed Ige and Little of other plasma proteins, and that blood cell damage was negligible. The extracorporeal circulation system is safe and reliable. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Mesenchymal stem cells (MSCs) are currently under investigation as repair agents in the preservation of cardiac function following myocardial infarction (MI). However concerns have emerged regarding the safety of acute intracoronary (IC) MSC delivery specifically related to mortality, micro-infarction and microvascular flow restriction post cell therapy in animal models. This thesis aimed to firstly identify an optimal dose of MSC that could be tolerated when delivered via the coronary artery in a porcine model of acute MI (AMI). Initial dosing studies identified 25x106 MSC to be a safe MSC cell dose, however, angiographic observations from these studies recognised that on delivery of MSC there was a significant adverse decrease in distal blood flow within the artery. This observation along with additional supportive data in the literature (published during the course of this thesis) suggested MSC may be contributing to such adverse events through the propagation of thrombosis. Therefore further studies aimed to investigate the innate prothrombotic activity of MSC. Expression of the initiator of the coagulation cascade initiator tissue factor (TF) on MSC was detected in high levels on the surface of these cells. MSC-derived TF antigen was catalytically active, capable of supporting thrombin generation in vitro and enhancing platelet-driven thrombus deposition on collagen under flow. Infusion of MSC via IC route was associated with a decreased coronary flow reserve when delivered but not when coadministered with an antithrombin agent heparin. Heparin also reduced MSC-associated in situ thrombosis incorporating platelets and VWF in the microvasculature. Heparin-assisted MSC delivery reduced acute apoptosis and significantly improved infarct size, left ventricular ejection fraction, LV volumes, wall motion and scar formation at 6 weeks post AMI. In addition, this thesis investigated the paracrine factors secreted by MSC, in particular focusing on the effect on cardiac repair of a novel MSC-paracrine factor SPARCL1. In summary this work provides new insight into the mechanism by which MSC may be deleterious when delivered by an IC route and a means of abrogating this effect. Moreover we present new data on the MSC secretome with elucidation of the challenges encountered using a single paracrine factor cardiac repair strategy.
Resumo:
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.
Resumo:
BACKGROUND: In contrast to adults, ulcers are un-common in Helicobacter pylori-infected children. Since immunological determinants influence the outcome of H. pylori infection, we have investigated mucosal T cell responses in H. pylori-infected children and compared them with those of adults and negative controls. MATERIAL AND METHODS: Mucosal biopsies were obtained from 43 patients undergoing an upper GI endoscopy for dyspeptic symptoms. The concentrations of released cytokines and the density of CD3+, CD25+ and CD69+cells were evaluated by flow cytometry, and the numbers of cytokine-secreting cells were measured by ELISPOT. RESULTS: The numbers of isolated antral CD3+ lymphocytes were only significantly raised in infected adults compared with noninfected controls (p < 0.05), whereas the proportion of CD3+ cells expressing activation markers (CD25 or CD69) remained low. In the stomach, IFN-gamma concentrations increased in infected children and infected adults compared with controls (p < 0.05), but IFN-gamma concentrations were tenfold lower in children than in adults (p < 0.01). IL-2, IL-4, IL-10 and TNF-alpha concentrations were similar in infected and in uninfected children and adults. In contrast, in the duodenum, IFN-gamma, as well as IL-4 and IL-10 concentrations were only increased in infected children compared with controls (p < 0.05). The concentrations of these cytokines were similar in both groups of adults who, however, like children, displayed a higher number of duodenal IL-4-secreting cells compared to controls (p < 0.05). CONCLUSION: These results suggest that IFN-gamma secretion in the stomach of H. pylori-infected patients is lower in children than in adults. This could protect children from development of severe gastro-duodenal diseases such as ulcer disease. In addition, infected patients are characterised by a dysregulation of the mucosal cytokine secretion at distance from the infection site.
Resumo:
To analyse the impact of lack of MHC class II expression on the composition of the peripheral T-cell compartment in man, the expression characteristics of several membrane antigens were examined on peripheral blood lymphocytes (PBL) and cultured T cells derived from an MHC-class-II-deficient patient. No MHC class II expression could be detected on either PBL or activated T cells. Moreover, the expression of MHC class I was reduced both on PBL and in vitro activated T cells compared to the healthy control. However, the reduced expression of CD26 observed on the PBL of the patient was restored after in vitro expansion. Despite the presumably class-II-deficient thymic environment, a distinct but reduced single CD4+ T-cell population was observed in the PBL of the patient. After in vitro expansion, the percentage of CD4+ cells dropped even further, most likely due to a proliferative disadvantage, compared to the single CD8+ T-cell population. However, proliferation analysis showed that T-cell activation via the TcR/CD3 pathway is not affected by the MHC class II deficiency.
Resumo:
Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.
Resumo:
BACKGROUND: The conventional treatment protocol in high-intensity focused ultrasound (HIFU) therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs) inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. METHODS: An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-gamma-secreting cells in HIFU-treated mice. RESULTS: HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an enhanced anti-tumor immune response than dense-scan HIFU, while their suppressive effects on the treated primary tumor were maintained at the same level. Flow cytometry analysis showed that sparse-scan HIFU was more effective than dense-scan HIFU in enhancing DC infiltration into tumor tissues and promoting their maturation in situ. CONCLUSION: Optimizing scan strategy is a feasible way to boost HIFU-induced anti-tumor immunity by more effectively promoting DC maturation.
Resumo:
Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type.
Resumo:
The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.
Resumo:
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.