990 resultados para flood risk forecasting


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood simulation models and hazard maps are only as good as the underlying data against which they are calibrated and tested. However, extreme flood events are by definition rare, so the observational data of flood inundation extent are limited in both quality and quantity. The relative importance of these observational uncertainties has increased now that computing power and accurate lidar scans make it possible to run high-resolution 2D models to simulate floods in urban areas. However, the value of these simulations is limited by the uncertainty in the true extent of the flood. This paper addresses that challenge by analyzing a point dataset of maximum water extent from a flood event on the River Eden at Carlisle, United Kingdom, in January 2005. The observation dataset is based on a collection of wrack and water marks from two postevent surveys. A smoothing algorithm for identifying, quantifying, and reducing localized inconsistencies in the dataset is proposed and evaluated showing positive results. The proposed smoothing algorithm can be applied in order to improve flood inundation modeling assessment and the determination of risk zones on the floodplain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This winter (2013/14) coastal storms and an unprecedented amount of rainfall led to significant and widespread flooding across the southern UK. Despite much criticism and blame surrounding the flood events, the Flood Forecasting Centre, a recent development in national-level flood forecasting capabilities for the government and emergency response communities, has received considerable praise. Here we consider how scientific developments and organisational change have led to improvements in the forecasting and flood preparedness seen in this winter's flooding. Although such improvements are admirable, there are many technical and communication challenges that remain for probabilistic flood forecasts to achieve their full potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report provides case studies of Early Warning Systems (EWSs) and risk assessments encompassing three main hazard types: drought; flood and cyclone. The case studies are taken from ten countries across three continents (focusing on Africa, South Asia and the Caribbean). The case studies have been developed to assist the UK Department for International Development (DFID) to prioritise areas for Early Warning System (EWS) related research under their ‘Science for Humanitarian Emergencies and Resilience’ (SHEAR) programme. The aim of these case studies is to ensure that DFID SHEAR research is informed by the views of Non-Governmental Organisations (NGOs) and communities engaged with Early Warning Systems and risk assessments (including community-based Early Warning Systems). The case studies highlight a number of challenges facing Early Warning Systems (EWSs). These challenges relate to financing; integration; responsibilities; community interpretation; politics; dissemination; accuracy; capacity and focus. The case studies summarise a number of priority areas for EWS related research: • Priority 1: Contextualising and localising early warning information • Priority 2: Climate proofing current EWSs • Priority 3: How best to sustain effective EWSs between hazard events? • Priority 4: Optimising the dissemination of risk and warning information • Priority 5: Governance and financing of EWSs • Priority 6: How to support EWSs under challenging circumstances • Priority 7: Improving EWSs through monitoring and evaluating the impact and effectiveness of those systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Há mais de uma década, o Value-at-Risk (VaR) é utilizado por instituições financeiras e corporações não financeiras para controlar o risco de mercado de carteiras de investimentos. O fato dos métodos paramétricos assumirem a hipótese de normalidade da distribuição de retornos dos fatores de risco de mercado, leva alguns gestores de risco a utilizar métodos por simulação histórica para calcular o VaR das carteiras. A principal crítica à simulação histórica tradicional é, no entanto, dar o mesmo peso na distribuição à todos os retornos encontrados no período. Este trabalho testa o modelo de simulação histórica com atualização de volatilidade proposto por Hull e White (1998) com dados do mercado brasileiro de ações e compara seu desempenho com o modelo tradicional. Os resultados mostraram um desempenho superior do modelo de Hull e White na previsão de perdas para as carteiras e na sua velocidade de adaptação à períodos de ruptura da volatilidade do mercado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esse trabalho é uma aplicação do modelo intertemporal de apreçamento de ativos desenvolvido por Campbell (1993) e Campbell e Vuolteenaho (2004) para as carteiras de Fama-French 2x3 brasileiras no period de janeiro de 2003 a abril de 2012 e para as carteiras de Fama-French 5x5 americanas em diferentes períodos. As varíaveis sugeridas por Campbell e Vuolteenaho (2004) para prever os excessos de retorno do mercado acionário americano no period de 1929 a 2001 mostraram-se também bons preditores de excesso de retorno para o mercado brasileiro no período recente, com exceção da inclinação da estrutura a termo das taxas de juros. Entretanto, mostramos que um aumento no small stock value spread indica maior excesso de retorno no futuro, comportamento que não é coerente com a explicação para o prêmio de valor sugerida pelo modelo intertemporal. Ainda, utilizando os resíduos do VAR preditivo para definir o risco de choques de fluxo de caixa e de choques nas taxas de desconto das carteiras de teste, verificamos que o modelo intertemporal resultante não explica adequadamente os retornos observados. Para o mercado norte-americano, concluímos que a abilidade das variáveis propostas para explicar os excessos de retorno do mercado varia no tempo. O sucesso de Campbell e Vuolteenaho (2004) em explicar o prêmio de valor para o mercado norte-americano na amostra de 1963 a 2001 é resultado da especificação do VAR na amostra completa, pois mostramos que nenhuma das varíaveis é um preditor de retorno estatisticamente significante nessa sub-amostra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our focus is on information in expectation surveys that can now be built on thousands (or millions) of respondents on an almost continuous-time basis (big data) and in continuous macroeconomic surveys with a limited number of respondents. We show that, under standard microeconomic and econometric techniques, survey forecasts are an affine function of the conditional expectation of the target variable. This is true whether or not the survey respondent knows the data-generating process (DGP) of the target variable or the econometrician knows the respondents individual loss function. If the econometrician has a mean-squared-error risk function, we show that asymptotically efficient forecasts of the target variable can be built using Hansens (Econometrica, 1982) generalized method of moments in a panel-data context, when N and T diverge or when T diverges with N xed. Sequential asymptotic results are obtained using Phillips and Moon s (Econometrica, 1999) framework. Possible extensions are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This model connects directly the radar reflectivity data and hydrological variable runoff. The catchment is discretized in pixels (4 Km × 4 Km) with the same resolution of the CAPPI. Careful discretization is made so that every grid catchment pixel corresponds precisely to CAPPI grid cell. The basin is assumed a linear system and also time invariant. The forecast technique takes advantage of spatial and temporal resolutions obtained by the radar. The method uses only the measurements of the factor reflectivity distribution observed over the catchment area without using the reflectivity - rainfall rate transformation by the conventional Z-R relationships. The reflectivity values in each catchment pixel are translated to a gauging station by using a transfer function. This transfer function represents the travel time of the superficial water flowing through pixels in the drainage direction ending at the gauging station. The parameters used to compute the transfer function are concentration time and the physiographic catchment characteristics. -from Authors