977 resultados para federated search tool
Resumo:
The field of collaborative health planning faces significant challenges posed by the lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges have been exaggerated by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and evidence-based decision-making. Some studies suggest that the use of ICT-based tools in health planning may lead to: increased collaboration between stakeholder sand the community; improve the accuracy and quality of the decision making process; and, improve the availability of data and information for health decision-makers as well as health service planners. Research has justified the use of decision support systems (DSS) in planning for healthy cities as these systems have been found to improve the planning process. DSS are information communication technology (ICT) tools including geographic information systems (GIS) that provide the mechanisms to help decision-makers and related stake holders assess complex problems and solve these in a meaningful way. Consequently, it is now more possible than ever before to make use of ICT-based tools in health planning. However, knowledge about the nature and use of DSS within collaborative health planning is relatively limited. In particular, little research has been conducted in terms of evaluating the impact of adopting these tools upon stakeholders, policy-makers and decision-makers within the health planning field. This paper presents an integrated method that has been developed to facilitate an informed decision-making process to assist in the health planning process. Specifically, the paper describes the participatory process that has been adopted to develop an online GIS-based DSS for health planners. The literature states that the overall aim of DSS is to improve the efficiency of the decisions made by stakeholders, optimising their overall performance and minimizing judgmental biases. For this reason, the paper examines the effectiveness and impact of an innovative online GIS-based DSS on health planners. The case study of the online DSS is set within a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This unique setting-based initiative is named the Logan-Beaudesert Health Coalition (LBHC).The paper outlines the impact occurred by implementing the ICT-based DSS. In conclusion, the paper emphasizes upon the need for the proposed tool for enhancing health planning.
Resumo:
Groundwater is increasingly recognised as an important yet vulnerable natural resource, and a key consideration in water cycle management. However, communication of sub-surface water system behaviour, as an important part of encouraging better water management, is visually difficult. Modern 3D visualisation techniques can be used to effectively communicate these complex behaviours to engage and inform community stakeholders. Most software developed for this purpose is expensive and requires specialist skills. The Groundwater Visualisation System (GVS) developed by QUT integrates a wide range of surface and sub-surface data, to produce a 3D visualisation of the behaviour, structure and connectivity of groundwater/surface water systems. Surface data (elevation, surface water, land use, vegetation and geology) and data collected from boreholes (bore locations and subsurface geology) are combined to visualise the nature, structure and connectivity of groundwater/surface water systems. Time-series data (water levels, groundwater quality, rainfall, stream flow and groundwater abstraction) is displayed as an animation within the 3D framework, or graphically, to show water system condition changes over time. GVS delivers an interactive, stand-alone 3D Visualisation product that can be used in a standard PC environment. No specialised training or modelling skills are required. The software has been used extensively in the SEQ region to inform and engage both water managers and the community alike. Examples will be given of GVS visualisations developed in areas where there have been community concerns around groundwater over-use and contamination.
Resumo:
Consider a person searching electronic health records, a search for the term ‘cracked skull’ should return documents that contain the term ‘cranium fracture’. A information retrieval systems is required that matches concepts, not just keywords. Further more, determining relevance of a query to a document requires inference – its not simply matching concepts. For example a document containing ‘dialysis machine’ should align with a query for ‘kidney disease’. Collectively we describe this problem as the ‘semantic gap’ – the difference between the raw medical data and the way a human interprets it. This paper presents an approach to semantic search of health records by combining two previous approaches: an ontological approach using the SNOMED CT medical ontology; and a distributional approach using semantic space vector space models. Our approach will be applied to a specific problem in health informatics: the matching of electronic patient records to clinical trials.
Resumo:
This study investigates the application of local search methods on the railway junction traffic conflict-resolution problem, with the objective of attaining a quick and reasonable solution. A procedure based on local search relies on finding a better solution than the current one by a search in the neighbourhood of the current one. The structure of neighbourhood is therefore very important to an efficient local search procedure. In this paper, the formulation of the structure of the solution, which is the right-of-way sequence assignment, is first described. Two new neighbourhood definitions are then proposed and the performance of the corresponding local search procedures is evaluated by simulation. It has been shown that they provide similar results but they can be used to handle different traffic conditions and system requirements.
Resumo:
Software used by architectural and industrial designers – has moved from becoming a tool for drafting, towards use in verification, simulation, project management and project sharing remotely. In more advanced models, parameters for the designed object can be adjusted so a family of variations can be produced rapidly. With advances in computer aided design technology, numerous design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to both leverage specialized design knowledge from various discipline domains (known as expert knowledge systems) and support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques to record and respond to a designer’s own way of working and design history. It is expected that this will lead to results that impact on future work on design support systems-(ergonomics and interface) as well as implicit constraint and problem definition for problems that are difficult to quantify.
Resumo:
Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.
Resumo:
As a result of the managerial reforms adopted by government agencies since the 1980s, the stakeholder approach has become more widely accepted as a strategic management tool. However it remains a difficult and demanding task for agencies to determine who their stakeholders are and to optimise interactions with them. This paper examines how government agencies identify, classify and engage with stakeholders who have competing demands, differing access to resources and the ability to exert political pressure. To do this, the stakeholder approaches of nine agencies at three levels of government in Queensland were studied. This resulted in the development of a Stakeholder Classification Model for Public Agencies which could be used to create more focused and relevant stakeholder interventions.
Resumo:
User-Web interactions have emerged as an important research in the field of information science. In this study, we examine extensively the Web searching performed by general users. Our goal is to investigate the effects of users’ cognitive styles on their Web search behavior in relation to two broad components: Information Searching and Information Processing Approaches. We use questionnaires, a measure of cognitive style, Web session logs and think-aloud as the data collection instruments. Our study findings show wholistic Web users tend to adopt a top-down approach to Web searching, where the users searched for a generic topic, and then reformulate their queries to search for specific information. They tend to prefer reading to process information. Analytic users tend to prefer a bottom-up approach to information searching and they process information by scanning search result pages.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
This paper addresses reflective practice in research and practice and takes the issue of consciousness of social class in vocational psychology as a working example. It is argued that the discipline’s appreciation of social class can be advanced through application of the qualitative research method autoethnography. Excerpts from an autoethnographic study are used to explore the method’s potential. This reflexive research method is presented as a potential vehicle to improve vocational psychologists’ own class consciousness, and to concomitantly enhance their capacity to grasp social class within their own spheres of research and practice. It is recommended that autoethnography be used for research, training, and professional development for vocational psychologists.
Resumo:
Sports sponsorship increasingly provides organisations with the opportunity to reach their target audiences in a manner that facilitates engagement and encourages relationship development. This paper provides an Australian perspective of the value of sports sponsorship using a case study of WOW Sight and Sound’s long-term sponsorship of the Brisbane Broncos rugby league team. The case study investigates WOW’s marketing objectives which centre generating brand awareness using sponsorship with the Brisbane Broncos as an integrated marketing communications tool. WOW believes that the integration of its sponsorship of the Broncos with the team’s total marketing plan is integral to its success. This integration requires the facilitation of two-way communications between WOW, its advertising agency, the Brisbane Broncos and customers to ensure that all parties’ needs are met.
Resumo:
Many researchers have investigated and modelled aspects of Web searching. A number of studies have explored the relationships between individual differences and Web searching. However, limited studies have explored the role of users’ cognitive styles in determining Web searching behaviour. Current models of Web searching have limited consideration of users’ cognitive styles. The impact of users’ cognitive style on Web searching and their relationships are little understood or represented. Individuals differ in their information processing approaches and the way they represent information, thus affecting their performance. To create better models of Web searching we need to understand more about user’s cognitive style and their Web search behaviour, and the relationship between them. More rigorous research is needed in using more complex and meaningful measures of relevance; across a range of different types of search tasks and different populations of Internet users. The project further explores the relationships between the users’ cognitive style and their Web searching. The project will develop a model depicting the relationships between a user’s cognitive style and their Web searching. The related literature, aims and objectives and research design are discussed.
Resumo:
Purpose: Businesses cannot rely on their customers to always do the right thing. To help researchers and service providers better understand the dark (and light) side of customer behavior, this study aims to aggregate and investigate perceptions of consumer ethics from young consumers on five continents. The study seeks to present a profile of consumer behavioral norms, how ethical inclinations have evolved over time, and country differences. ---------- Design/methodology/approach: Data were collected from ten countries across five continents between 1997 and 2007. A self-administered questionnaire containing 14 consumer scenarios asked respondents to rate acceptability of questionable consumer actions. ---------- Findings: Overall, consumers found four of the 14 questionable consumer actions acceptable. Illegal activities were mostly viewed as unethical, while some legal actions that were against company policy were viewed less harshly. Differences across continents emerged, with Europeans being the least critical, while Asians and Africans shared duties as most critical of consumer actions. Over time, consumers have become less tolerant of questionable behaviors. ---------- Practical implications: Service providers should use the findings of this study to better understand the service customer. Knowing what customers in general believe is ethical or unethical can help service designers focus on the aspects of the technology or design most vulnerable to customer deviance. ---------- Multinationals already know they must adapt their business practices to the market in which they are operating, but they must also adapt their expectations as to the behavior of the corresponding consumer base. Originality/value: This investigation into consumer ethics helps businesses understand what their customer base believes is the right thing in their role as customer. This is a large-scale study of consumer ethics including 3,739 respondents on five continents offering an evolving view of the ethical inclinations of young consumers.
Resumo:
The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.