923 resultados para energy landscape theory
Resumo:
Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.
Resumo:
Nowadays, the development of the photovoltaic (PV) technology is consolidated as a source of renewable energy. The research in the topic of maximum improvement on the energy efficiency of the PV plants is today a major challenge. The main requirement for this purpose is to know the performance of each of the PV modules that integrate the PV field in real time. In this respect, a PLC communications based Smart Monitoring and Communications Module, which is able to monitor at PV level their operating parameters, has been developed at the University of Malaga. With this device you can check if any of the panels is suffering any type of overriding performance, due to a malfunction or partial shadowing of its surface. Since these fluctuations in electricity production from a single panel affect the overall sum of all panels that conform a string, it is necessary to isolate the problem and modify the routes of energy through alternative paths in case of PV panels array configuration.
Resumo:
The picturesque aesthetic in the work of Sir John Soane, architect and collector, resonates in the major work of his very personal practice – the development of his house museum, now the Soane Museum in Lincoln’s Inn Fields in London. Soane was actively involved with the debates, practices and proponents of picturesque and classical practices in architecture and landscape and his lectures reveal these influences in the making of The Soane, which was built to contain and present diverse collections of classical and contemporary art and architecture alongside scavenged curiosities. The Soane Museum has been described as a picturesque landscape, where a pictorial style, together with a carefully defined itinerary, has resulted in the ‘apotheosis of the Picturesque interior’. Soane also experimented with making mock ruinscapes within gardens, which led him to construct faux architectures alluding to archaeological practices based upon the ruin and the fragment. These ideas framed the making of interior landscapes expressed through spatial juxtapositions of room and corridor furnished with the collected object that characterise The Soane Museum. This paper is a personal journey through the Museum which describes and then reviews aspects of Soane’s work in the context of contemporary theories on ‘new’ museology. It describes the underpinning picturesque practices that Soane employed to exceed the boundaries between interior and exterior landscapes and the collection. It then applies particular picturesque principles drawn from visiting The Soane to a speculative project for a house/landscape museum for the Oratunga historic property in outback South Australia, where the often, normalising effects of conservation practices are reviewed using minimal architectural intervention through a celebration of ruinous states.
Resumo:
The main objective of the thesis is to seek insights into the theory, and provide empirical evidence of rebound effects. Rebound effects reduce the environmental benefits of environmental policies and household behaviour changes. In particular, win-win demand side measures, in the form of energy efficiency and household consumption pattern changes, are seen as ways for households and businesses to save money and the environment. However, these savings have environmental impacts when spent, which are known as rebound effects. This is an area that has been widely neglected by policy makers. This work extends the rebound effect literature in three important ways, (1) it incorporates the potential for variation of rebound effects with household income level, (2) it enables the isolation of direct and indirect effects for cases of energy efficient technology adoption, and examines the relationship between these two component effects, and (3) it expands the scope of rebound effect analysis to include government taxes and subsidies. MACROBUTTON HTMLDirect Using a case study approach it is found that the rebound effect from household consumption pattern changes targeted at electricity is between 5 and 10%. For consumption pattern changes with reduced vehicle fuel use, the rebound effect is in the order of 20 to 30%. Higher income households in general are found to have a lower total rebound effect; however the indirect effect becomes relatively more significant at higher household income levels. In the win-lose case of domestic photovoltaic electricity generation, it is demonstrated that negative rebound effects can occur, which can potentially amplify the environmental benefits of this action. The rebound effect from a carbon tax, which occurs due to the re-spending of raised revenues, was found to be in the range of 11-32%. Taxes and transfers between households of different income levels also have environmental implications. For example, a more progressive tax structure, with increased low income welfare payments is likely to increase greenhouse gas emissions. Subsidies aimed at encouraging environmentally friendly consumption habits are also subject to rebound effects, as they constitute a substitution of government expenditure for household expenditure. For policy makers, these findings point to the need to incorporate rebound effects in the environmental policy evaluation process.’
Resumo:
Leading scholars on nonprofit governance have urged that future research be more informed by theory in order to promote more rigorous analysis. The aim of this paper is to survey the major theories on board governance, including those based in the disciplines of economics, management, sociology, psychology, politics, history and theology, in order to respond to this challenge. In addition, the relevance of these theories to a critical set of board behaviors - that is, how boards monitor, judge and influence organizational performance - is examined. Gaps in the theoretical literature are identified, and implications for public policy are explored. We conclude that a multi-theory and multi-disciplinary perspective is needed if research on governance of nonprofit organizations is to be complete in scope, rich in content, and relevant.
Resumo:
This paper presents the stability analysis for a distribution static compensator (DSTATCOM) that operates in current control mode based on bifurcation theory. Bifurcations delimit the operating zones of nonlinear circuits and, hence, the capability to compute these bifurcations is of important interest for practical design. A control design for the DSTATCOM is proposed. Along with this control, a suitable mathematical representation of the DSTATCOM is proposed to carry out the bifurcation analysis efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the point of common coupling. In addition, the stability regions in the control gain space, as well as the contour lines for different Floquet multipliers are computed. It is demonstrated through bifurcation analysis that the loss of stability in the DSTATCOM is due to the emergence of a Neimark bifurcation. The observations are verified through simulation studies.
Resumo:
Professional discourse in education has been the focus of research conducted mostly with teachers and professional practitioners but the work of students in the built environment has largely been ignored. This article presents an analysis of students’ visual discourse in the final professional year of a landscape architecture course in Brisbane, Australia. The study has a multi-method design and includes drawings, interviews and documentary materials, but focuses on the drawings in this paper. Using the theory of Bernstein, the analysis considers student representations as interrelations between professional identity and discretionary space for legitimate knowledge formation in landscape planning. It shows a shift in how students persuade the teacher of their expanding views of this field. The discussion of this shift centres on the professional knowledge that students choose rather than need to learn. It points to the differences within a class that a teacher must address in curriculum design in a contemporary professional course.
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Resumo:
Various countries have been introducing sustainable assessment tools for real estate design to produce integrated sustainability components not just for the building, but also the landscape component of the development. This paper aims to present the comparison between international and local assessment tools of landscape design for housing estate developments in Bangkok Metropolitan Region (BMR), Thailand. The methodologies used are to review, then compare and identify discrepancy indicators among the tools. This paper will examine four international tools; LEED for Neighbourhood Development (LEED – ND) of United State of America (USA), EnviroDevelopment standards of Australia, Residential Landscape Sustainability of United Kingdom (UK) and Green Mark for Infrastructure of Singapore; and three BMR’s existing tools; Land Subdivision Act B.E. 2543, Environmental Impact Assessment Monitoring Awards (EIA-MA) and Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). The findings show that there are twenty two elements of three categories which are neighbourhood design, community management, and environmental condition. Moreover, only one element in neighbourhood designs different between the international and local tools. The sustainable assessment tools have existed in BMR but they are not complete in only one assessment tool. Thus, the development of new comprehensive assessment tool will be necessary in BMR; however, it should meet the specific environment and climate condition for housing estate development at BMR.
Resumo:
Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.